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Physical-Optics System Modeling
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Physical-Optics System Modeling
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Physical-Optics System Modeling

Field Tracing: Connecting Field Solvers




Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region




Field Tracing: Connecting Field Solvers
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Field Tracing: Connecting Field Solvers

@ Usage of numerically most efficient field solver per component/region

Non-sequential connection of regional solvers




Field Tracing: Sequential
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Field Tracing: Non-Sequential
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Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region

Non-sequential connection of regional solvers: system solver

2013

Non-Sequential Optical Field Tracing Kuhn, M.; Wyrowski, F. & Hellmann, C. (2013),
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Example of Plate/Etalon

Fig. 9.41 Phase shifts arising purely from the reflections (internal
6 < 0,).

at point P, is then

Eo, = Eor — (Eotrt’ + Egtr’t’ + Egtr’t + - - )
or

Different lightpaths

(

Eo = Eor — Etrt'(1 + P+ 4 +--),

N

Sum of mutually
coherent fields per
lightpath
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Example of Plate/Etalon

306 Interference

Thin film v
v g 1
| —r! = 0.04
|
: tri=018
'r“l |
|
|
Fig. 9.41 Phase shifts arising purely from the reflections (internal : 5 o
I =0,
;). |
B‘ < ’) : ll L e
—2n 0 n dn é

Fig. 9.45 Airy function.
at point P, is then
y ; S - density emerging from the film. It follows from Eqgs. (9.33)
Eo = Eor = (Egtrt’ + Eotrt’ + Egtrt + - - -) and (9.34), that this is indeed the case, that is
or
Eo = Eor — Etrit(V + P2+ 4 +---), o=l + 1. (9.35)
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Tilted Planar-Planar Surfaces

I3 13: Tilted Planar Surfaces -2

Chromatic Fields Set

first surface tilt by 0.1°

etalon configuration
b) planar-planar (tilted)

- center thickness 100um

Qltof)first surface 0.1°

05

¥ [mm]
0

0.5

1
. prallel Planar Surfaces EIIE'
Chromatic Fields Set
05 parallel surfaces
g 1
1] !

-1 05 0 05 1
X [mm]

0 05

-0.5

-1

Linear interference fringes
appear due to linear change
of etalon thickness.

-1 05 0 05 1
X [mm]
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Cylindrical-Planar Surfaces

etalon configuration
c) cylindrical-planar
- center thickness 100um
- cylindrical (x) surface
radius 1m

|\30°

3 14: Input Field Polarized along ¥ =N =R

Chromatic Fields Set

input polarization along y

1
D DIS
0
-1 05 0 05 1

X [mm]

¥ [mm]
[ R

0.5

Polarization-dependent
effect on the interference is
considered in the simulation.

I 15: Input Field Polarized along X [ |2 )

Chromatic Fields Set

¥ [mm]

input polarization along x
34

-
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0
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Spherical-Planar Surfaces

3 16: Spherical - Planar Surface = |- E | 3]

Chromatic Fields Set

Data for Wavelength of 532 nm  [[V/m)*2]

1
D M
0 Non-sequential field

-1 05 0 05 1 . . .
tracing simulation of
il etalons allows the
consideration of arbitrary
surface types.

etalon configuration

d) spherical-planar

- center thickness 100um
- spherical (x&y) surface
radius 1m

¥ [mm]
0 05

05

|\30°
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Connecting Field Solvers
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Rectangular + Sawtooth Grating (45° rotated)

o Structure

— Front: rectangular grating
(along x direction)

— Back: sawtooth grating
(along x-y diagonal direction)
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Rectangular + Sawtooth Grating (45° rotated)

o Structure X

— Front: rectangular grating
(along x direction)

— Back: sawtooth grating
(along x-y diagonal direction)

Global S matrix (TM)

= No common period!

= Huge computational effort even
with approximated common period
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Connecting Field Solvers

o Structure

— Front: rectangular grating
(along x direction)

— Back: sawtooth grating
(along x-y diagonal direction)
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Connecting Field Solvers

* Non-sequential field tracing (Tm)

E=. 5: D:\OneDrive\..\2018-01-22_Results_Rect-45RotSawtoothD.7um_.. | = || E |[s25s]

MNumencal Data Array

Diagram  Table Value at x-Coordinate convergence

Subsets #0, #1, #2, #3, #4, #6, #5 [%]

15 20

10

IR N NN

T(-1, 0): 22.7%

"T(1, 0): 20.1%
Efficiency T(-1, 0)
Efficiency T(0, 0]
Efficiency T(1, 0)
Efficiency Ti0, -1)
Efficiency Ti0, 1)
Efficiency T(-1, -1)

Efficiency T(1, 1)

S 10 1l 20 25

number of light paths

T(0, 0):
21.8%

) T(-1, 0)

Global S matrix NOT possible!

= No common period

= Huge computational effort even
with approximated common period
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Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region

Non-sequential connection of regional solvers: system solver

Evaluation of all relevant (energy) lightpaths to detectors

VirtualLab Fusion’s Lightpath Finder provides
LR |ightpath “tree” of all relevant lightpaths for further
processing.




Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region

Evaluation of all relevant (energy) lightpaths to detectors

Physical-optics analysis of all lightpaths by operator sequences

@ Non-sequential connection of regional solvers: system solver




Physical-Optics System Modeling: Regional Field Solver

nonlinear

components
crystals & anisotropic

components
waveguides & fibers \

scatterer

free space

P

. lenses & freeforms

apertures & boundaries

prisms, plates, cubes, ...

Field Solvers

diffusers ¢ \ gratings
diffractive beam splitters diffractive, Fresnel, meta
lenses

SLM & adaptive

HOE, CGH, DOE

componentsicro lens & freeform
arrays

24



Operator Sequences per Lightpath

Evaluation of sequence
(Bi1Pj1) (B Pj) -




Numerical Complexity of Operators
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Numerical Complexity of Operators
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Homeomorphism
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Homeomorphism

‘ - p'=p'(p)
[ —— k' =K' (k)
¢ :N?

! S kK= K(p)

« Homeomorphism: p’ = p’(p) is bijective

« Homeomorphic mapping: Coordinates change but neighbors
remain the same.




Homeomorphism

https://en.wikipedia.org/wiki’lHomeomorphism

« Homeomorphism: p’ = p’(p) is bijective

« Homeomorphic mapping: Coordinates change but neighbors
remain the same.




Homeomorphism

« Homeomorphism: p’ = p’(p) is bijective

« Homeomorphic mapping: Coordinates change but neighbors
remain the same.

« Advantage: Mesh-based technique to interpolate gridless data
by fitting and spline interpolation.




Physical-Optics System Modeling: Regional Field Solver
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Physical-Optics System Modeling: Regional Field Solver

Preference: Select operators in that domain in

which they are homeomorphic.
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Regional Field Solvers Applied in Different Domains
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Switching Domains: Preferable Operators Linear in N

e.g. curved
g aperture J surface operator
operator

Ve B B,
(P, w) e.g. etalon
operator
(F"’v w) N N N H - — T — >

P P B: P Bs P
e.g. grating operator
channels free-space q }
3 4 (per order)

propagation incl. tilt
(curved surfaces)

'73|| = X exp(ik,Az)
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Homeomorphic Operations in Operator Sequence
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Fourier Transform Integral Operator

Dependent on field,
Fourier transforms can be
1:1 mappings as well.

VIie) B
(p,w) 7
(k,w) 25 ?I — ?I 4 ?LH|_~[ -

channels [ = [ [
source 1 2 3 4
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Fourier Transform Integral Operator

Decision about Fourier transform follows

from a numerical accuracy criterion only.
No change in physical model!
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1:1 Mapping Sequence in Physical Optics

39



1:1 Mapping Sequence in Physical Optics

V(pn) Ves(pott)

Ray tracing: p°"t(p'?)

n

40



Field Tracing and Sampling

Field tracing algorithm applies a hybrid sampling:

Nyquist sampling (gridded) in combination with gridless
sampling (spline interpolation).

41



Selection of Fourier Transforms: Free-Space Propagation

1% yout
(0.0 (p) (p)

(K, w)

[ iR | ]’ﬁll = X exp(ik,Az)

[. Baladron-Zorita, Z. Wang, C. Hellmann, and F. Wyrowski (Germany): Ahysical-optics anatomy of the Gouy phase shift




Homeomorphic Sequences in Physical Optics

Modeling operators B are often homeomorphic in one domain.

If the homeomorphic Fourier transform connects such 1:1 operators,
homeomorphic sequences are obtained in physical optics.

Homeomorphic sequences enable fast physical optics modeling.

Fast physical optics: field tracing algorithm identifies and performs as
many homeomorphic operations as possible.

VirtualLab Fusion decides about application of homeomorphic Fourier
transform automatically on basis of numerical accuracy!

00000

VirtualLabrusion




Field Tracing: Connecting Field Solvers

Resulting algorithm stays always in a vectorial

electromagnetic modeling with all physical-optics
effects included.




Field Tracing: Connecting Field Solvers

By OPTIONALLY enforcing homeomorphic Fourier

transform in (part of) the system, diffraction effects can
be excluded from physical-optics modeling on demand!




Homeomorphic Sequences in Physical Optics

Ray tracing is properly formulated and accessible

through physical optics!




Examples



Conventional Lens System Modeling

Homeomorphic Fourier Transform

—]

t—




Homeomorphic Fourier Transform
Conventional Lens System Modeling 3




Homeomorphic Fourier Transform
Conventional Lens System Modeling 3

Vlf Blens Bstop




Diffraction Inside Lens System?

Homeomorphic Fourier Transform

Bstop




Homeomorphic Fourier Transform
Diffraction Inside Lens System? &




Homeomorphic Fourier Transform
Diffraction Inside Lens System? &

Field tracing considers diffraction of one or more

stops/apertures within lens systems.




Propagation of Field Through Aperture: In Focus

I(p) = |E.(p)” + |Ey(p)]* + |E.(p)|?

n 49: Camera Detector 2601 after Dummy Plane for 3D Raytracing (here diffractive prop... IEI

Chromatic Fields Set

-05 -04 -03 -02 -01 0 01 02 03 04 05

Data for Wavelength of 532 nm

05 -04 03 02 -01 0 01 02 03 04 05

Rectangular
aperture in focus
(3um x 3um)

(p;w)

I(p) = |E.(p)” + |Ey(p)]* + |E.(p)|?

Chromatic Fields Set

I3 40: Camera Detector 2600 after Aperture £1 (T) (Field Tracing 2nd Generation)

fo ) o |msl

Data for Wavelength of 532 nm

Homeomorphic Fourier Transform




Propagation of Field Through Aperture: Front of Focus

I(p) = |E.(p)I” + | By (p)]> + |E.(p)|?

n 48: Camera Detector 2601 after Dummy Plane for 3D Raytracing (here diffractive prop... EI

Chromatic Fields Set

Data for Wavelength of 532 nm

(p;w)

(K, w)

front of focus
(80pm x 80um)

I(p) = |E.(p)|” + |Ey(p)]* + |E.(p)|”

Rectangular aperture in |

I3 25: Camera Detector #600 after Aperture #1 (T) (Field Tracing 2nd Generation) ==

Chromatic Fields Set

Data for Wavelength of 532 nm

Homeomorphic Fourier Transform




Propagation of Field Through Aperture: Front of Focus

I(p) = |E+(p)* + |Ey(p)|* + |E.(p)” I(p) = |E.(p)|2 + |E,(p)|2 + |E.(p)|?

I3 29: Camera Detector #600 after Aperture #1 (T) (Field Tracing 2nd Generation) =nEER =<

[ e e e Pl;:,z;:, ,3::: :::::tng (here diffractive prop...| = || &[] Re Cta N g u I a r a p e rtu re i N S
front of focus -
(1Tmm x 1mm)

‘Chromatic Fields Set

| Data for Wavelength of 532 nm

Data for Wavelength of 532 nm

(p;w)

(K, w)




Typical Modeling Situation for AR&MR Lightguide
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Cascaded Diffraction in Lightguide Modeling: Layout

Lightguide: Front View Lightguide: Top View

n & Q$D:l
— | m

Grating regions: variation of
diffraction efficiency per segment

[’[ Ray tracing illustration ]

F*<

4 mm

—




Cascaded Diffraction in Lightguide Modeling: Layout

Lightguide: Front View Lightguide: Top View

o & Q$D:l
— | |

. . : Grating regions: variation of
U | Ray tracing illustration | = diffraction efficiency per segment

*Y
—

4 mm

—




Lightguide Modeling: Suppressed Diffraction Effects (Homeomorphic)

Lightguide: Front View

Intensity (homeomorphic model)

I 5: Camera Detector 600 after Light Guide #1 (R) (Field Tracing 2nd Generation) oS

Chromatic Fields Set

Enforcing homeomorphic Fourier J By Oy b oy e ey

transform: Speed and effect selection

6 6 V(p)

Bji1 B

K
P P
o 0

Homeomorphic Fourier Transform

——]

\

¥ [mm]

Data for Wavelength of 532 nm

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
K [mm]

I(p) =

[Ex(p)|” + |Ey(p)]> + |E=(p)I?




Lightguide Modeling: Diffraction Effects Included

Lightguide: Front View

Viip) B2 Bt B \4
(p,w) A~
Fr E 7:]:1 Fi .7-';1 Fr .’F;l Fr ;1
(K, w) L)ﬂé - —— 1—)
P B, P Bs B; P P
- O (1] o 0

Intensity

I 3: Camera Detector 600 after Light Guide #1 (R) (Field Tracing 2nd Generatian) ][]

Chromatic Fields Set

¥ [mm]

Data for Wavelength of 5332 nm

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
K [mm]

I(p)

[Ex(p)|” + |Ey(p)]> + |E=(p)I?




Reflected Field at Interface Fused Silica to Air

fused silica air

[ Reflected field?




Electromagnetic Input Field

B2 (p)|

[Ey(p)|

E.(p)|

Amplitude of “Ex-Component” [V/m]

Amplitude of “"Ey-Component” [V/m]

Eﬂ 4: Electromagnetic Field at the Source Plane E Eﬂ 4: Electromagnetic Field at the Source Plane E-ﬂ E 4: Electromagnetic Field at the Source Plane E]
Electric Field Electric Field Electric Field
Diagram Table Value at (xy) Diagram Table Value at {xy) Diagram Table Value at (xy)
Amplitude of “Ez-Component” [V/m]

P

= E E
E®° 0.5 Ee° 0.5 E
> > ==
0 0
& 0 1 -1 0 1
X [mm] X [mm]
fused silica air Vsphere Vreﬂ

IErm(p)I2 + |Ey(p)]* + |E.(p)

n 5: Camera Detector
Chromatic Fields Set

=@

v
\LJ

Data for Wavelength of 532 nm [(V/m)*2]

Y [mm]
0

-1 0 1
X [mm]

1

0




Electromagnetic Spherical Field: k-Domain

By ()]

~

= 66: Fourier Transform (Incidence)
Numerical Data Array

IE] H 66: Fourier Transform (Incidence)

Numerical Data Array

(= ol ==

E 66: Fourier Transform (Incidence)
Numerical Data Array

(=% HoR =

Diagram  Table

Value at (x.y)
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Electromagnetic Spherical Field: k-Domain

= 66: Fourier Transform (Incidence) =) E=! 66: Fourier Transform (Incidence) (3]

E =) E 66: Fourier Transform (Incidence) E]
Numerical Data Array Numerical Data Array

Numerical Data Array

~

Diagram Table Value at {xy) Diagram Table Value at {xy) Diagram Table Value at (xy)
Amplitude of “"Ex-Component” [1E-10 V/m] Amplitude of “Ey-Component” [1E-10 V/m] Amplitude of “"Ez-Component” [1E-10 V/m]
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—1 Homeomorphic Fourier Transform
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Electromagnetic Spherical Field: k-Domain

[=: 60: Fourier Transform (Reflection) == E=: 60: Fourier Transform (Reflection) [= | @ |[e3s] B 60: Fourier Transform (Reflection) [o]-®
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Electromagnetic Spherical Field: k-Domain
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Reflected Field at Interface Fused Silica to Air
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Electromagnetic Input Field
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Electromagnetic Spherical Field: k-Domain
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Electromagnetic Spherical Field: k-Domain
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Electromagnetic Spherical Field: k-Domain
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Electromagnetic Spherical Field: k-Domain
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Electromagnetic Spherical Field: k-Domain
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Conclusion

 Field tracing: Connecting field solvers.

« Evaluation of all relevant lightpaths for a non-
sequential connection.

« Simulation by operator sequence per lightpath.

« Switching between domains and exploiting
homeomorphic operations enable fast physical
optics.

 Homeomorphic Fourier transform essential
mathematical concept.

* Physical interpretation: Homeomorphic physical- Autumn Release 2019
optics operator sequences reveal the “geometric” part
of electromagnetic theory.
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