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Application of a single field solver, e.g. FDTD, is not 
a realistic approach in system modeling. 
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Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region 1
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Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region 1

Non-sequential connection of regional solvers2
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Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region 1

Non-sequential connection of regional solvers: system solver2
2013

Kuhn, M.; Wyrowski, F. & Hellmann, C. (2013), 
Non-sequential optical field tracing, in T. Apel & O. 

Steinbach, ed., 'Finite Element Methods and 
Applications', Springer-Verlag, Berlin, , pp. 257-274.



Example of Plate/Etalon

12

Different lightpaths 
because of non-
sequential model

Sum of mutually 
coherent fields per 

lightpath



Example of Plate/Etalon

13



Tilted Planar-Planar Surfaces

etalon configuration 
b) planar-planar (tilted)
- center thickness 100 µm
- tilt of first surface 0.1°

Linear interference fringes 
appear due to linear change 

of etalon thickness.

parallel surfaces

first surface tilt by 0.1°
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input polarization along y

Cylindrical-Planar Surfaces

etalon configuration 
c) cylindrical-planar
- center thickness 100 µm
- cylindrical (x) surface 

radius 1 m
input polarization along x

Polarization-dependent 
effect on the interference is 
considered in the simulation.
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Spherical-Planar Surfaces

etalon configuration 
d) spherical-planar
- center thickness 100 µm
- spherical (x&y) surface

radius 1 m

Non-sequential field 
tracing simulation of 
etalons allows the 
consideration of arbitrary 
surface types.
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Connecting Field Solvers
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Rectangular + Sawtooth Grating (45° rotated)

• Structure
− Front: rectangular grating

(along x direction) 

− Back: sawtooth grating
(along x-y diagonal direction)
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Rectangular + Sawtooth Grating (45° rotated)

• Structure
− Front: rectangular grating

(along x direction) 

− Back: sawtooth grating
(along x-y diagonal direction)

x

y z

Global S matrix (TM)
 No common period! 
 Huge computational effort even 
with approximated common period

x

y

T(0, 0)

T(1, 0)

T(-1, 0)

T(0, 1)

T(0, -1)
T(1, 1)

T(-1, -1)
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Connecting Field Solvers

• Structure
− Front: rectangular grating

(along x direction) 

− Back: sawtooth grating
(along x-y diagonal direction)
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Connecting Field Solvers

• Non-sequential field tracing (TM)

Global S matrix NOT possible!
 No common period
 Huge computational effort even 
with approximated common period

x

y

T(0, 0)

T(1, 0)

T(-1, 0)

T(0, 1)

T(0, -1)
T(1, 1)

T(-1, -1)

number of light paths

T(0, 0): 
21.8%

T(-1, 0): 22.7%

T(1, 0): 20.1%

convergence



Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region 1

Non-sequential connection of regional solvers: system solver2

Evaluation of all relevant (energy) lightpaths to detectors3

VirtualLab Fusion’s Lightpath Finder provides 
lightpath “tree” of all relevant lightpaths for further 
processing.



Field Tracing: Connecting Field Solvers

Usage of numerically most efficient field solver per component/region 1

Non-sequential connection of regional solvers: system solver2

Evaluation of all relevant (energy) lightpaths to detectors3

Physical-optics analysis of all lightpaths by operator sequences4



Physical-Optics System Modeling: Regional Field Solver

free space

prisms, plates, cubes, ...

lenses & freeforms

apertures & boundaries

gratings

diffractive, Fresnel, meta 
lenses

HOE, CGH, DOE
micro lens & freeform 

arrays

SLM & adaptive 
components

diffractive beam splitters

diffusers

scatterer

waveguides & fibers

crystals & anisotropic 
components

nonlinear 
components

24

Field Solvers



Operator Sequences per Lightpath

…

…



Numerical Complexity of Operators

Integral Operator: 
Complexity O(N²)

1:1 Mapping-Type Operator: 
Complexity O(N)



Numerical Complexity of Operators

Integral Operator: 
Complexity O(N²)

1:1 Mapping-Type Operator: 
Complexity O(N)
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Homeomorphism

https://en.wikipedia.org/wiki/Homeomorphism



Homeomorphism



Physical-Optics System Modeling: Regional Field Solver
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Field Solvers



Physical-Optics System Modeling: Regional Field Solver
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Field Solver
Preference: Select operators in that domain in 

which they are homeomorphic.  



Regional Field Solvers Applied in Different Domains
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Field Solvers

space domain

k-domain

space or/and k-
domain



Switching Domains: Preferable Operators Linear in N
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e.g. aperture 
operator

e.g. etalon  
operator

e.g. grating operator 
(per order)free-space 

propagation incl. tilt 
(curved surfaces)

e.g. curved 
surface operator



Homeomorphic Operations in Operator Sequence
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e.g. aperture 
operator

e.g. etalon  
operator

e.g. grating operator 
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Fourier Transform Integral Operator

37

Dependent on field, 
Fourier transforms can be 

1:1 mappings as well. 

? ? ? ? ?



Fourier Transform Integral Operator

38

Dependent on field, 
Fourier transforms can be 

1:1 mappings as well. 

Decision about Fourier transform follows 
from a numerical accuracy criterion only. 

No change in physical model!  



1:1 Mapping Sequence in Physical Optics
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1:1 Mapping Sequence in Physical Optics
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Field Tracing and Sampling

41

Field tracing algorithm applies a hybrid sampling: 
Nyquist sampling (gridded) in combination with gridless 

sampling (spline interpolation).   



Selection of Fourier Transforms: Free-Space Propagation 

? ?

!



Homeomorphic Sequences in Physical Optics

Modeling operators B are often homeomorphic in one domain.1

If the homeomorphic Fourier transform connects such 1:1 operators,  
homeomorphic sequences are obtained in physical optics. 2

Fast physical optics: field tracing algorithm identifies and performs as 
many homeomorphic operations as possible. 4

Homeomorphic sequences enable fast physical optics modeling. 3

VirtualLab Fusion decides about application of homeomorphic Fourier 
transform automatically on basis of numerical accuracy! 5



Field Tracing: Connecting Field Solvers

Modeling operators B are often homeomorphic in one domain.1

If the homeomorphic Fourier transform connects such 1:1 operators,  
homeomorphic sequences are obtained in physical optics. 2

Ray tracing is embedded in 1:1 mapping sequences in physical optics!4

Homeomorphic sequences enable fast physical optics modeling. 3

VirtualLab Fusion decides about application of homeomorphic Fourier 
transform automatically on basis of numerical accuracy! 5

Resulting algorithm stays always in a vectorial 
electromagnetic modeling with all physical-optics 

effects included. 



Field Tracing: Connecting Field Solvers

Modeling operators B are often homeomorphic in one domain.1

If the homeomorphic Fourier transform connects such 1:1 operators,  
homeomorphic sequences are obtained in physical optics. 2

Ray tracing is embedded in 1:1 mapping sequences in physical optics!4

Homeomorphic sequences enable fast physical optics modeling. 3

VirtualLab Fusion decides about application of homeomorphic Fourier 
transform automatically on basis of numerical accuracy! 5

By OPTIONALLY enforcing homeomorphic Fourier 
transform in (part of) the system, diffraction effects can 
be excluded from physical-optics modeling on demand!  



Homeomorphic Sequences in Physical Optics

Modeling operators B are often homeomorphic in one domain.1

If the homeomorphic Fourier transform connects such 1:1 operators,  
homeomorphic sequences are obtained in physical optics. 2

Ray tracing is embedded in 1:1 mapping sequences in physical optics!4

Homeomorphic sequences enable fast physical optics modeling. 3

VirtualLab Fusion decides about application of homeomorphic Fourier 
transform automatically on basis of numerical accuracy! 5

Ray tracing is properly formulated and accessible
through physical optics! 
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Conventional Lens System Modeling 

Homeomorphic Fourier Transform



Conventional Lens System Modeling 



Conventional Lens System Modeling 



Diffraction Inside Lens System?

??



Diffraction Inside Lens System?

? ?? ? ? ?



Diffraction Inside Lens System?

? ?? ? ? ?

Field tracing considers diffraction of one or more 
stops/apertures within lens systems.   



Propagation of Field Through Aperture: In Focus

Rectangular 
aperture in focus 

(3µm x 3µm)

Ray tracing illustration



Propagation of Field Through Aperture: Front of Focus

Rectangular aperture in 
front of focus 

(80µm x 80µm)

Ray tracing illustration



Propagation of Field Through Aperture: Front of Focus

Rectangular aperture in 
front of focus 
(1mm x 1mm)

Ray tracing illustration



Typical Modeling Situation for AR&MR Lightguide
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Cascaded Diffraction in Lightguide Modeling: Layout

Ray tracing illustration
Grating regions: variation of 

diffraction efficiency per segment

Lightguide: Top ViewLightguide: Front View



Cascaded Diffraction in Lightguide Modeling: Layout

Ray tracing illustration
Grating regions: variation of 

diffraction efficiency per segment

Lightguide: Top ViewLightguide: Front View



Lightguide Modeling: Suppressed Diffraction Effects (Homeomorphic)

Intensity (homeomorphic model)Lightguide: Front View
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Enforcing homeomorphic Fourier 
transform: Speed and effect selection



Lightguide Modeling: Diffraction Effects Included

Lightguide: Front View Intensity
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42
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Reflected Field at Interface Fused Silica to Air

fused silica air

spherical field
x-polarized
NA = 1.27

Reflected field?



Electromagnetic Input Field



Electromagnetic Spherical Field: k-Domain



Electromagnetic Spherical Field: k-Domain



Electromagnetic Spherical Field: k-Domain



Electromagnetic Spherical Field: k-Domain



Reflected Field at Interface Fused Silica to Air

fused silica air

spherical field
x-polarized
NA = 1.27



Reflected Field at Interface Fused Silica to Air

fused silica air

spherical field
x-polarized
NA = 1.27

Reflected field?



Electromagnetic Input Field



Electromagnetic Spherical Field: k-Domain



Electromagnetic Spherical Field: k-Domain



Electromagnetic Spherical Field: k-Domain



Electromagnetic Spherical Field: k-Domain



Electromagnetic Spherical Field: k-Domain



Conclusion

• Field tracing: Connecting field solvers.
• Evaluation of all relevant lightpaths for a non-

sequential connection. 
• Simulation by operator sequence per lightpath.  
• Switching between domains and exploiting 

homeomorphic operations enable fast physical 
optics.

• Homeomorphic Fourier transform essential 
mathematical concept.  

• Physical interpretation: Homeomorphic physical-
optics operator sequences reveal the “geometric” part 
of electromagnetic theory. 

Autumn Release 2019



Thank You! 
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