

EOS Topical Meeting on Diffractive Optics, September 2019, Jena, Germany

On the importance of homeomorphic operations in physical and geometrical optics

F. Wyrowski*, O. Baladron-Zorita*, Z. Wang*, C. Hellmann** *University of Jena, **Wyrowski Photonics

Physical-Optics System Modeling

Physical-Optics System Modeling

Physical-Optics System Modeling

Usage of numerically most efficient field solver per component/region

Field Tracing: Sequential

Field Tracing: Non-Sequential

Example of Plate/Etalon

Example of Plate/Etalon

Tilted Planar-Planar Surfaces

Cylindrical-Planar Surfaces

Spherical-Planar Surfaces

Non-sequential field tracing simulation of etalons allows the consideration of arbitrary surface types.

Connecting Field Solvers

Rectangular + Sawtooth Grating (45° rotated)

- Structure
 - Front: rectangular grating (along *x* direction)
 - Back: sawtooth grating (along *x-y* diagonal direction)

Rectangular + Sawtooth Grating (45° rotated)

- Structure
 - Front: rectangular grating (along *x* direction)
 - Back: sawtooth grating (along x-y diagonal direction)

Global S matrix (TM) → No common period!

→ Huge computational effort even with approximated common period

Connecting Field Solvers

- Structure
 - Front: rectangular grating (along *x* direction)
 - Back: sawtooth grating (along x-y diagonal direction)

Connecting Field Solvers

Global S matrix *NOT* possible! → No common period

➔ Huge computational effort even with approximated common period

• Non-sequential field tracing (TM)

Evaluation of all relevant (energy) lightpaths to detectors

VirtualLab Fusion's Lightpath Finder provides lightpath "tree" of all relevant lightpaths for further processing.

Physical-optics analysis of all lightpaths by operator sequences

Physical-Optics System Modeling: Regional Field Solver

Operator Sequences per Lightpath

Evaluation of sequence $\dots (\mathcal{B}_{j+1}\mathcal{P}_{j+1})(\mathcal{B}_j\mathcal{P}_j)\dots$

Numerical Complexity of Operators

Numerical Complexity of Operators

 $egin{aligned} & oldsymbol{
ho}' &= oldsymbol{
ho}'(oldsymbol{
ho}) \ & oldsymbol{\kappa}' &= oldsymbol{\kappa}'(oldsymbol{\kappa}) \ & oldsymbol{\kappa} &= oldsymbol{\kappa}(oldsymbol{
ho}) \end{aligned}$

- Homeomorphism: ${oldsymbol
 ho}'={oldsymbol
 ho}'({oldsymbol
 ho})$ is bijective
- Homeomorphic mapping: Coordinates change but neighbors remain the same.

https://en.wikipedia.org/wiki/Homeomorphism

- Homeomorphism: ${oldsymbol
 ho}'={oldsymbol
 ho}'({oldsymbol
 ho})$ is bijective
- Homeomorphic mapping: Coordinates change but neighbors remain the same.

- Homeomorphism: ${oldsymbol
 ho}'={oldsymbol
 ho}'({oldsymbol
 ho})$ is bijective
- Homeomorphic mapping: Coordinates change but neighbors remain the same.
- Advantage: Mesh-based technique to interpolate gridless data by fitting and spline interpolation.

Physical-Optics System Modeling: Regional Field Solver

Physical-Optics System Modeling: Regional Field Solver

Regional Field Solvers Applied in Different Domains

Switching Domains: Preferable Operators Linear in N

Homeomorphic Operations in Operator Sequence

Fourier Transform Integral Operator

Fourier Transform Integral Operator

1:1 Mapping Sequence in Physical Optics

1:1 Mapping Sequence in Physical Optics

Ray tracing: $\rho_n^{\text{out}}(\rho_n^{\text{in}})$

Field Tracing and Sampling

Selection of Fourier Transforms: Free-Space Propagation

D. Baladron-Zorita, Z. Wang, C. Hellmann, and F. Wyrowski (Germany): *Physical-optics anatomy of the Gouy phase shift.*

Homeomorphic Sequences in Physical Optics

Modeling operators **B** are often homeomorphic in one domain. If the homeomorphic Fourier transform connects such 1:1 operators, homeomorphic sequences are obtained in physical optics. Homeomorphic sequences enable fast physical optics modeling. Fast physical optics: field tracing algorithm identifies and performs as many homeomorphic operations as possible. VirtualLab Fusion decides about application of homeomorphic Fourier 5 transform automatically on basis of numerical accuracy!

Field Tracing: Connecting Field Solvers

4

5

Modeling operators **B** are often homeomorphic in one domain.

Resulting algorithm stays always in a vectorial electromagnetic modeling with all physical-optics effects included.

Ray tracing is embedded in 1:1 mapping sequences in physical optics!

VirtualLab Fusion decides about application of homeomorphic Fourier transform automatically on basis of numerical accuracy!

Field Tracing: Connecting Field Solvers

4

5

Modeling operators **B** are often homeomorphic in one domain.

If the homeomorphic Fourier transform connects such 1:1 operators,

By OPTIONALLY enforcing homeomorphic Fourier transform in (part of) the system, diffraction effects can be excluded from physical-optics modeling on demand!

Ray tracing is embedded in 1:1 mapping sequences in physical optics!

VirtualLab Fusion decides about application of homeomorphic Fourier transform automatically on basis of numerical accuracy!

Homeomorphic Sequences in Physical Optics

4

5

Modeling operators **B** are often homeomorphic in one domain.

If the homeomorphic Fourier transform connects such 1:1 operators,

Ray tracing is properly formulated and **accessible** through physical optics!

Ray tracing is embedded in 1:1 mapping sequences in physical optics!

VirtualLab Fusion decides about application of homeomorphic Fourier transform automatically on basis of numerical accuracy!

Examples

Conventional Lens System Modeling

Homeomorphic Fourier Transform

Conventional Lens System Modeling

Homeomorphic Fourier Transform

 ${\cal F}$

Conventional Lens System Modeling

 ${\cal F}$

Diffraction Inside Lens System?

Homeomorphic Fourier Transform

 ${\cal F}$

Diffraction Inside Lens System?

Diffraction Inside Lens System?

 ${\mathcal F}$

Homeomorphic Fourier Transform

Field tracing considers diffraction of one or more stops/apertures within lens systems.

Propagation of Field Through Aperture: In Focus

Propagation of Field Through Aperture: Front of Focus

Propagation of Field Through Aperture: Front of Focus

Typical Modeling Situation for AR&MR Lightguide

Cascaded Diffraction in Lightguide Modeling: Layout

Cascaded Diffraction in Lightguide Modeling: Layout

Lightguide Modeling: Suppressed Diffraction Effects (Homeomorphic)

Lightguide Modeling: Diffraction Effects Included

Reflected Field at Interface Fused Silica to Air

Electromagnetic Input Field

Reflected Field at Interface Fused Silica to Air

Reflected Field at Interface Fused Silica to Air

Electromagnetic Input Field

Electromagnetic Spherical Field: k-Domain

Electromagnetic Spherical Field: k-Domain

Conclusion

- Field tracing: Connecting field solvers.
- Evaluation of all relevant lightpaths for a nonsequential connection.
- Simulation by operator sequence per lightpath.
- Switching between domains and exploiting homeomorphic operations enable fast physical optics.
- Homeomorphic Fourier transform essential mathematical concept.
- Physical interpretation: Homeomorphic physicaloptics operator sequences reveal the "geometric" part of electromagnetic theory.

Autumn Release 2019

Thank You!