

EOS Topical Meeting on Diffractive Optics 2019

Numerical implementation of the homeomorphic Fourier transform and its application to physicaloptics modeling

Zongzhao Wang^{1,2}, Olga Baladron-Zorita^{1,2}, Christian Hellmann^{2,3} and Frank Wyrowski¹ ¹ Applied Computational Optics Group, Friedrich Schiller University Jena, Germany, 07743 ² LightTrans International UG, Jena, Germany, 07745 ³ Wyrowski Photonics GmbH, Jena, Germany, 07745 The electromagnetic field at a certain plane is given by

 $V_{\ell}\left(\boldsymbol{\rho}\right) = \left|V_{\ell}\left(\boldsymbol{\rho}\right)\right| \exp\left(i\gamma_{\ell}(\boldsymbol{\rho})\right)$

where $\ell = 1, \ldots, 6$ to account for all six field components. $\rho = (x, y)$ is the projection of the position vector onto the transversal plane.

Phase:
$$\gamma_{\ell}(\boldsymbol{\rho}) = \arg \left[V_{\ell} \left(\boldsymbol{\rho} \right) \right]$$

Extract the Smooth Wavefront Phase (Geometric Phase)

$$V_{\ell}(\boldsymbol{\rho}) = |V_{\ell}(\boldsymbol{\rho})| \exp(i\gamma_{\ell}(\boldsymbol{\rho}))$$

$$= U_{\ell}(\boldsymbol{\rho}) \exp\left(\mathsf{i}\psi(\boldsymbol{\rho})\right)$$

- Residual diffractive field: $U_{\ell}(\boldsymbol{\rho}) = |V_{\ell}(\boldsymbol{\rho})| \exp(i\gamma_{\ell}(\boldsymbol{\rho}) i\psi(\boldsymbol{\rho}))$
- Smooth wavefront phase: $\psi({oldsymbol
 ho})$

Hybrid Sampling Strategy

Interpolation methods

- Sinc interpolation
- Cubic 8 interpolation

Interpolation methods

- Quadratic interpolation
- B-Spline interpolation

Field behind a Mask

Fourier Transform of the Field behind a Mask

Fourier Transform of the Field behind the Mask

Results of Fourier Transform

Results of Fourier Transform

$$V_{\ell} (\boldsymbol{\rho}) = U_{\ell} (\boldsymbol{\rho}) \exp (\mathrm{i}\psi(\boldsymbol{\rho}))$$
2D Fourier transform integral
$$\tilde{V}_{\ell} (\boldsymbol{\kappa}) = \iint_{-\infty}^{\infty} V_{\ell} (\boldsymbol{\rho}) \exp (-\mathrm{i}\boldsymbol{\kappa} \cdot \boldsymbol{\rho}) \, \mathrm{d}k_{x} \mathrm{d}k_{y}$$

$$\int \boldsymbol{\kappa} = (k_{x}, k_{y})$$

$$\tilde{V}_{\ell} (\boldsymbol{\kappa}) = \iint_{-\infty}^{\infty} U_{\ell} (\boldsymbol{\rho}) \exp (\mathrm{i}\psi(\boldsymbol{\rho}) - \mathrm{i}\boldsymbol{\kappa} \cdot \boldsymbol{\rho}) \, \mathrm{d}k_{x} \mathrm{d}k_{y}$$

Homeomorphic Fourier Transform (HFT)

$$\tilde{V}_{\ell}(\boldsymbol{\kappa}) = \iint_{-\infty}^{\infty} U_{\ell}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi(\boldsymbol{\rho}) - \mathrm{i}\boldsymbol{\kappa}\cdot\boldsymbol{\rho}\right) \mathrm{d}k_{x}\mathrm{d}k_{y}$$

Stationary phase method

Bijective Mapping (Homeomorphism)

2:1 mapping (X)

1:1 mapping (</

Conditions of the stationary phase method

- $U_{\ell}(\boldsymbol{\rho})$ is slow varying field. (wavefront phase dominate FT)
- For given κ , there is only one ρ have $\nabla (\psi(\rho) \kappa \cdot \rho) = 0$. (bijective mapping)

Criteria of the homeomorphism: the second derivative factor $\psi_{xy}^2 - \psi_{xx}\psi_{yy}$ are all positive or all negative in the definition domain.

Homeomorphic Fourier transform

$$\begin{split} V_{\ell}\left(\boldsymbol{\rho}\right) &= U_{\ell}\left(\boldsymbol{\rho}\right) \exp\left(\mathrm{i}\psi(\boldsymbol{\rho})\right) \\ & \nabla\psi(\boldsymbol{\rho}) = \boldsymbol{\kappa} \qquad (\boldsymbol{\rho} \to \boldsymbol{\kappa}, \, 1{:}1 \text{ mapping relation}) \\ & \sqrt{} \\ \tilde{V}_{\perp}\left(\boldsymbol{\kappa}\right) &= \alpha \left[\boldsymbol{\rho}\left(\boldsymbol{\kappa}\right)\right] U_{\ell}\left[\boldsymbol{\rho}\left(\boldsymbol{\kappa}\right)\right] \exp\left(\mathrm{i}\psi\left[\boldsymbol{\rho}\left(\boldsymbol{\kappa}\right)\right] - \boldsymbol{\kappa} \cdot \boldsymbol{\rho}\left(\boldsymbol{\kappa}\right)\right) \\ &= \tilde{A}\left(\boldsymbol{\kappa}\right) \exp\left(\mathrm{i}\tilde{\psi}\left(\boldsymbol{\kappa}\right)\right) \\ \end{split}$$
with $\alpha\left(\boldsymbol{\rho}\right) &= \begin{cases} \sqrt{\frac{\mathrm{i}}{\psi_{xx}(\boldsymbol{\rho})}} \sqrt{-\frac{\mathrm{i}\psi_{xx}(\boldsymbol{\rho})}{\psi_{xy}^{2}(\boldsymbol{\rho}) - \psi_{xx}(\boldsymbol{\rho})\psi_{yy}(\boldsymbol{\rho})}} &, \quad \psi_{xx}\left(\boldsymbol{\rho}\right) \neq 0 \\ \frac{1}{|\psi_{xy}(\boldsymbol{\rho})|} &, \quad \psi_{xx}\left(\boldsymbol{\rho}\right) = 0 \end{cases}$

Numerical implementation and examples

HFT vs. FFT @ NA = 0

HFT vs. FFT @ NA = 0.027

HFT vs. FFT @ NA = 0.134

HFT vs. FFT @ NA = 0.804

Comparison of the Numerical Effort and Accuracy

Comparison of the Numerical Effort and Accuracy

Comparison of the Numerical Effort and Accuracy

Plane Wave Illuminates the "Light" Mask

Through Zernike Phase Plate

Through Zernike Phase Plate

Results of Fourier Transform

Truncated Spherical Wave

Results of Fourier Transform

Amplitude of E_x Component [V/m]

 $ilde{V}_{\ell}\left(oldsymbol{\kappa}
ight)$

Amplitude of E_x Component $[1 \times 10^{-9} \,\mathrm{V \cdot m}]$

 $V_{\ell}(\boldsymbol{\rho}) = |V_{\ell}(\boldsymbol{\rho})| \exp\left(\mathrm{i}\psi(\boldsymbol{\rho})\right)$ $\psi(\boldsymbol{\rho}) = \psi^{\mathsf{sph}}(\boldsymbol{\rho}) = \operatorname{sgn}(r) k_0 \check{n} \sqrt{\boldsymbol{\rho}^2 + r^2}$

Through Zernike Phase Plate

Through Zernike Phase Plate

Results of Fourier Transform

www.applied-computational-optics.org

Field with Very Strong Aberrations

Handling of the General Non-bijective Wavefront Phase

 $\psi(\boldsymbol{\rho}) = \psi^{\mathsf{fit}}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})$

spherical phase and Zernike polynomials fitting

 $2.87 imes10^{-6}$

Examination of the Bijectivity

criteria: the second derivative factor $(\psi_{xy}^{\text{fit}})^2 - \psi_{xx}^{\text{fit}}\psi_{yy}^{\text{fit}}$ are all positive or all negative in the definition domain.

Optimization of the Non-bijective Wavefront Phase

- Elementary iterative method
 - start from the fitting result
 - omit the highest Zernike term
 - examine the bijectivity
 - Yes, stop
 - No, repeat the loop
- Note: elementary optimization result might be the best, but it can be the start point of the advanced optimization method.

Name & Type	Fitting expression	Fitting coefficients	$\psi^{\mathrm{map}}\left(oldsymbol{ ho} ight)$
spherical phase	$\psi^{\rm sph} = \operatorname{sgn}(R) k_0 \check{n} \sqrt{\rho^2 + R^2}$	R = 9.1 mm	\checkmark
Piston	$Z_0^0 = 1$	$c_0^0 = 0.88\lambda$	\checkmark
Tilt Y	$Z_1^{-1} = 2r\sin\theta$	$c_1^{-1} = -2.52\lambda$	\checkmark
Tilt X	$Z_1^1 = 2r\cos\theta$	$c_1^1 = -1.17\lambda$	\checkmark
Defocus	$Z_2^0 = \sqrt{3} \left(2\rho^2 - 1 \right)$	$c_2^0 = -1.97\lambda$	\checkmark
Astigmatism X	$Z_2^2 = \sqrt{6}r^2\cos 2\theta$	$c_2^2 = 27.6\lambda$	\checkmark
Trefoil Y	$Z_3^{-3} = \sqrt{8}r^3 \sin 3\theta$	$c_3^{-3} = 6.14\lambda$	\checkmark
Coma Y	$Z_3^{-1} = \sqrt{8} \left(3r^3 - 2r \right) \sin \theta$	$c_3^{-1} = 4.5\lambda$	\checkmark
Coma X	$Z_3^1 = \sqrt{8} \left(3r^3 - 2r \right) \cos \theta$	$c_3^1 = 6\lambda$	\checkmark
Trefoil X	$Z_3^3 = \sqrt{8}r^3\cos 3\theta$	$c_3^3 = 3.84\lambda$	\checkmark
Tetrafoil Y	$Z_4^{-4} = \sqrt{10}r^4 \sin 4\theta$	$c_4^{-4} = -3.53\lambda$	\checkmark
Spherical aberration	$Z_4^0 = \sqrt{5} \left(6r^4 - 6r^2 + 1 \right)$	$c_4^0 = 0.001\lambda$	\checkmark
Secondary Astigmatism X	$Z_4^2 = \sqrt{10} \left(4r^4 - 3r^2 \right) \cos 2\theta$	$c_4^2 = 0.15\lambda$	Х

Wavefront Phase Optimization Result

Handling of the General Wavefront Phase

- Spherical phase and Zernike phase fitting
- 2. Examine the non-bijectivity
- 3. Optimization of the phase fitting result

Homeomorphic Fourier Transform for the Non-bijective Field

 $V_{\ell}(\boldsymbol{\rho}) = U_{\ell}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi(\boldsymbol{\rho})\right)$

 $\nabla \psi(\rho) = \kappa$ ($ho
ightarrow \kappa$, 1:1 mapping relation)

 $\tilde{V}_{\perp}(\boldsymbol{\kappa}) = \alpha \left[\boldsymbol{\rho}(\boldsymbol{\kappa}) \right] U_{\ell} \left[\boldsymbol{\rho}(\boldsymbol{\kappa}) \right] \exp \left(i \psi \left[\boldsymbol{\rho}(\boldsymbol{\kappa}) \right] - \boldsymbol{\kappa} \cdot \boldsymbol{\rho}(\boldsymbol{\kappa}) \right)$

$$V_{\ell}(\boldsymbol{\rho}) = U_{\ell}(\boldsymbol{\rho}) \exp(i\psi^{\mathsf{res}}(\boldsymbol{\rho})) \exp(i\psi^{\mathsf{map}}(\boldsymbol{\rho}))$$
$$\nabla\psi^{\mathsf{map}}(\boldsymbol{\rho}) = \boldsymbol{\kappa}^{\mathsf{map}} \qquad (\boldsymbol{\rho} \to \boldsymbol{\kappa}^{\mathsf{map}}, 1:1 \text{ mapping relation})$$
$$\tilde{V}_{\perp}(\boldsymbol{\kappa}^{\mathsf{map}}) = \alpha \left[\boldsymbol{\rho}(\boldsymbol{\kappa}^{\mathsf{map}})\right] U_{\ell} \left[\boldsymbol{\rho}(\boldsymbol{\kappa}^{\mathsf{map}})\right] \exp(i\psi \left[\boldsymbol{\rho}(\boldsymbol{\kappa}^{\mathsf{map}})\right] - \boldsymbol{\kappa}^{\mathsf{map}} \cdot \boldsymbol{\rho}(\boldsymbol{\kappa}^{\mathsf{map}}))$$

Results of Fourier Transform

Summary

- Hybrid sampling strategy
 - diffractive field and smooth wavefront phase
 - reduce the number of sampling points for the 2-pi modulo phase
- Homeomorphic Fourier transform
 - stationary phase method
 - mapping type operation: N (much fewer than FFT)
- Validity of the homeomorphic Fourier transform
 - diffractive field is slow varying
 - wavefront phase is bijective (criteria: second derivative factor)
- Application of the HFT on the field with non-bijective phase
 - extract the bijective phase part
 - using new the mapping relation

Thank you for your attention!