

EOS Topical Meeting on Diffractive Optics, Jena, 17-09-2019

Physical-Optics Anatomy of the Gouy Phase Shift

Olga Baladron-Zorita^{1,2}, Zongzhao Wang^{1,2}, Christian Hellmann³ and Frank Wyrowski¹

¹ Applied Computational Optics Group, Institute of Applied Physics, Friedrich Schiller University Jena, Jena, Germany

² LightTrans International UG, Jena, Germany

³ Wyrowski Photonics GmbH, Jena, Germany

Context

On the Importance of Homeomorphic Operators in Physical and Geometrical Optics

Frank Wyrowski¹, Olga Baladron-Zorita^{1,2} and Zongzhao Wang^{1,2}

 ¹ Applied Computational Optics Group, Institute of Applied Physics, Friedrich Schiller University Jena, Jena, Germany
 ² LightTrans International UG, Jena, Germany

Numerical Implementation of the Homeomorphic Fourier Transform and Its Application to Physical-Optics Modelling

Zongzhao Wang^{1,2}, Olga Baladron-Zorita^{1,2}, Christian Hellmann³ and Frank Wyrowski¹

¹ Applied Computational Optics Group, Institute of Applied Physics, Friedrich Schiller University Jena, Jena, Germany

² LightTrans International UG, Jena, Germany

Context

Problem Statement: Free-Space Propagation in Physical Optics

4

Problem Statement: Free-Space Propagation in Physical Optics

Problem Statement: Free-Space Propagation in Physical Optics

Fully vectorial analysis!

 $\{E_x, E_y, E_z, H_x, H_y, H_z\} \rightarrow V$

 $\kappa = (\kappa_x, \kappa_y)$

SPW and the Convolution Theorem

SPW propagation operator:

 $V(\boldsymbol{\rho}, z) = \mathcal{F}_{\kappa}^{-1} \left\{ \mathcal{F}_{\kappa} \{ V(\boldsymbol{\rho}', z_0) \} \cdot \exp[\mathrm{i}\check{k}_z(\kappa) \,\Delta z] \right\}$

Convolution theorem:

 $\mathcal{F}_{\kappa}^{-1}\left\{\tilde{f}_{1}\cdot\tilde{f}_{2}\right\}=f_{1}\circledast f_{2}$ $V^{\mathrm{I}}(\boldsymbol{\rho}, z) = -\frac{1}{2\pi} \iint_{-\infty}^{+\infty} V(\boldsymbol{\rho}', z_0) \frac{\exp(\mathrm{i}k_0\check{n})}{R} \left(\mathrm{i}k_0\check{n} - \frac{1}{R}\right) \frac{\Delta z}{R} \mathrm{d}^2 \rho'$ $V^{\mathrm{I\!I}}(\boldsymbol{\rho}, z) = -\frac{1}{2\pi} \iint_{-\infty}^{+\infty} \frac{\partial}{\partial z} V(\boldsymbol{\rho}', z_0) \frac{\exp(\mathrm{i}k_0 \check{n}R)}{R} \mathrm{d}^2 \rho'$

SPW and the Convolution Theorem

SPW propagation operator:

 $V(\boldsymbol{\rho}, z) = \mathcal{F}_{\kappa}^{-1} \big\{ \mathcal{F}_{\kappa} \{ V(\boldsymbol{\rho}', z_0) \} \cdot \exp \big[\mathrm{i} \check{k}_z(\kappa) \, \Delta z \big] \big\}$

Convolution theorem:

$$\mathcal{F}_{\kappa}^{-1}\left\{\tilde{f}_1\cdot\tilde{f}_2\right\} = f_1 \circledast f_2$$

Spectrum of Plane Waves (SPW)

$$V^{\mathrm{I}}(\boldsymbol{\rho}, z) = -\frac{1}{2\pi} \iint_{-\infty}^{+\infty} V(\boldsymbol{\rho}', z_0) \, \frac{\exp(\mathrm{i}k_0 \check{n})}{R} \left(\mathrm{i}k_0 \check{n} - \frac{1}{R}\right) \frac{\Delta z}{R} \mathrm{d}^2 \boldsymbol{\rho}'$$
$$V^{\mathrm{II}}(\boldsymbol{\rho}, z) = -\frac{1}{2\pi} \iint_{-\infty}^{+\infty} \frac{\partial}{\partial z} V(\boldsymbol{\rho}', z_0) \, \frac{\exp(\mathrm{i}k_0 \check{n}R)}{R} \mathrm{d}^2 \boldsymbol{\rho}'$$

Free-Space Propagation: Rayleigh-Sommerfeld Integral

Free-Space Propagation: Rayleigh-Sommerfeld Integral

 (k_x,k_y)

Free-Space Propagation: Rayleigh-Sommerfeld Integral

Homeomorphism from κ^{in} to κ^{out} ...

... but not from ρ^{in} to ρ^{out}

... but not from ρ^{in} to ρ^{out}

The integral nature of free-space propagation stems from the Fourier transforms!

The Homeomorphic Fourier Transform: A Reminder

$$V(\boldsymbol{\rho}) = U(\boldsymbol{\rho}) \exp[i\psi(\boldsymbol{\rho})]$$

$$\nabla_{\perp}\psi(\boldsymbol{\rho}) = \boldsymbol{\kappa} \to \boldsymbol{\rho}(\boldsymbol{\kappa})$$

$$\tilde{V}(\boldsymbol{\kappa}) \approx \alpha[\boldsymbol{\rho}(\boldsymbol{\kappa})] U[\boldsymbol{\rho}(\boldsymbol{\kappa})] \exp(i\{\psi[\boldsymbol{\rho}(\boldsymbol{\kappa})] - \boldsymbol{\kappa} \cdot \boldsymbol{\rho}(\boldsymbol{\kappa})\})$$

$$\alpha(\boldsymbol{\rho}) = \sigma(\boldsymbol{\rho}) \sqrt{\frac{1}{|\psi_{xy}^{2}(\boldsymbol{\rho}) - \psi_{xx}(\boldsymbol{\rho})\psi_{yy}(\boldsymbol{\rho})|}}$$

$$\mathcal{F}_{\boldsymbol{\kappa}}^{\mathsf{hom}}\{V(\boldsymbol{\rho})\}$$

$$\tilde{\mathcal{V}}(\boldsymbol{\kappa}) = \tilde{\boldsymbol{\sigma}}(\boldsymbol{\kappa}) \exp\left[i\tilde{\boldsymbol{\psi}}(\boldsymbol{\kappa})\right] \exp\left(i\{\tilde{\boldsymbol{\psi}}[\boldsymbol{\kappa}(\boldsymbol{\rho})] + \boldsymbol{\kappa}(\boldsymbol{\rho}) \cdot \boldsymbol{\rho}\}\right)$$

$$\tilde{\alpha}(\boldsymbol{\kappa}) = \tilde{\boldsymbol{\sigma}}(\boldsymbol{\kappa}) \sqrt{\frac{1}{|\tilde{\boldsymbol{\psi}}_{xxy}^{2}(\boldsymbol{\kappa}) - \tilde{\boldsymbol{\psi}}_{kxkx}(\boldsymbol{\kappa})\tilde{\boldsymbol{\psi}}_{kyky}(\boldsymbol{\kappa})|}}$$

Liangxin Yang, Irfan Badar, Roberto Knoth, Christian Hellmann and Frank Wyrowski

Diffractive field zone (HFZ)

$$\mathbf{X} \bullet \mathcal{F}_{\kappa}^{\mathsf{hom}}\{V(\rho)\} \approx \mathcal{F}_{\kappa}\{V(\rho)\}$$

$$\mathbf{X} \cdot \mathcal{F}_{\nu}^{\mathsf{hom}}\{V(\boldsymbol{\rho})\} \sim \mathcal{F}_{\kappa}\{V(\boldsymbol{\rho})\}, \text{ even if } \psi(\boldsymbol{\rho}) = \psi^{\mathsf{spn}}(\boldsymbol{\rho})$$

The Homeomorphic Fourier Transform in Free-Space Propagation

The Homeomorphic Fourier Transform in Free-Space Propagation

Analytic solution for $\psi^{sph}(\rho')$!

$$V(\boldsymbol{\rho}, z) = \frac{1}{2\pi} \iint_{-\infty}^{+\infty} \alpha[\boldsymbol{\rho}'(\boldsymbol{\kappa})] U[\boldsymbol{\rho}'(\boldsymbol{\kappa})] \exp(\mathrm{i}\{\psi[\boldsymbol{\rho}'(\boldsymbol{\kappa})] - \boldsymbol{\kappa} \cdot \boldsymbol{\rho}'(\boldsymbol{\kappa})\}) \times \exp[\mathrm{i}\check{k}_{z}(\boldsymbol{\kappa}) \Delta z] \exp(\mathrm{i}\boldsymbol{\kappa} \cdot \boldsymbol{\rho}) \mathrm{d}^{2}\boldsymbol{\kappa}$$

From Far Field Zone to Diffractive Field Zone

From Far Field Zone to Diffractive Field Zone

$$V(\boldsymbol{\rho}, z) = \frac{1}{2\pi} \iint_{-\infty}^{+\infty} t \left[\frac{\boldsymbol{\kappa}}{\check{k}_z(\boldsymbol{\kappa})} R \right] \frac{-\mathrm{i}}{\check{k}_z(\boldsymbol{\kappa})} \exp[\mathrm{i}\boldsymbol{\kappa} \cdot \boldsymbol{\rho}] \,\mathrm{d}^2 \boldsymbol{\kappa}$$

From Far Field Zone to Diffractive Field Zone

1

3

Homeomorphic Fourier transform at input plane.

Spherical wavefront at input plane.

Propagation **exactly** to the focal point.

2

3

Homeomorphic Fourier transform at input plane.

Spherical wavefront at input plane.

Propagation **exactly** to the focal point.

3

Homeomorphic Fourier transform at input plane.

Spherical wavefront at input plane.

Propagation **exactly** to the focal point.

Analysis of the Effect of Wavefront Generalisation

Analysis of the Effect of Wavefront Generalisation

Analysis of the Effect of Wavefront Generalisation

From Diffractive Field Zone to Homeomorphic Field Zone

SPW propagalion operators

$$V(\boldsymbol{\rho}, z) = = \mathcal{F}_{\kappa}^{-1} \{ \mathcal{F}_{\kappa} \{ V(\boldsymbol{\rho}', z_0) \} \cdot \exp[\mathrm{i}\check{k}_z(\kappa)\,\Delta z] \}$$

$$V(\boldsymbol{\rho}, z) = \mathcal{F}_{\kappa}^{-1, \mathsf{hom}} \Big\{ \tilde{V}(\boldsymbol{\kappa}, z) \Big\} = \tilde{\alpha}[\boldsymbol{\kappa}(\boldsymbol{\rho})] \, \tilde{A}[\boldsymbol{\kappa}(\boldsymbol{\rho})] \exp \Big(\mathrm{i} \Big\{ \tilde{\psi}[\boldsymbol{\kappa}(\boldsymbol{\rho})] + \boldsymbol{\kappa}(\boldsymbol{\rho}) \cdot \boldsymbol{\rho} \Big\} \Big)$$

From Diffractive Field Zone to Homeomorphic Field Zone

SPW propagation operator:

$$V(\boldsymbol{\rho}, z) = = \mathcal{F}_{\kappa}^{-1} \{ \mathcal{F}_{\kappa} \{ V(\boldsymbol{\rho}', z_0) \} \cdot \exp[\mathrm{i}\check{k}_z(\kappa) \,\Delta z] \}$$

Analytic solution for $\psi^{sph}(\rho')$!

$$V(\boldsymbol{\rho}, z) = \mathcal{F}_{\kappa}^{-1, \mathsf{hom}} \Big\{ \tilde{V}(\boldsymbol{\kappa}, z) \Big\} = \tilde{\alpha}[\boldsymbol{\kappa}(\boldsymbol{\rho})] \, \tilde{A}[\boldsymbol{\kappa}(\boldsymbol{\rho})] \exp \Big(\mathrm{i} \Big\{ \tilde{\psi}[\boldsymbol{\kappa}(\boldsymbol{\rho})] + \boldsymbol{\kappa}(\boldsymbol{\rho}) \cdot \boldsymbol{\rho} \Big\} \Big)$$

From Diffractive Field Zone to Far Field Zone

From Diffractive Field Zone to Far Field Zone

From Diffractive Field Zone to Far Field Zone

$$\boldsymbol{\rho}(\boldsymbol{\kappa}) + \frac{\boldsymbol{\kappa}}{\check{k}_z(\boldsymbol{\kappa})} \Delta z = \boldsymbol{\rho}'(\boldsymbol{\kappa})$$

Analytic solution for $\psi^{sph}(\rho')$!

$$V(\boldsymbol{\rho}, z) = \frac{R}{R + \Delta z} U\left(\frac{R}{R + \Delta z}\boldsymbol{\rho}, z_0\right) \exp[\mathrm{i}\operatorname{sign}(R + \Delta z) k_0 \check{n} \check{r}(\boldsymbol{\rho}, z)]$$

$$V(\boldsymbol{\rho}, z) = \frac{R}{R + \Delta z} U\left(\frac{R}{R + \Delta z}\boldsymbol{\rho}, z_0\right) \exp[\mathrm{i}\operatorname{sign}(R + \Delta z) k_0 \check{n} \check{r}(\boldsymbol{\rho}, z)]$$

$$V(\boldsymbol{\rho}, z) = \frac{R}{R + \Delta z} U\left(\frac{R}{R + \Delta z}\boldsymbol{\rho}, z_0\right) \exp[\mathrm{i}\operatorname{sign}(R + \Delta z) k_0 \check{n} \check{r}(\boldsymbol{\rho}, z)]$$

$$V(\boldsymbol{\rho}, z) = \frac{R}{R + \Delta z} U\left(\frac{R}{R + \Delta z}\boldsymbol{\rho}, z_0\right) \exp[\mathrm{i}\operatorname{sign}(R + \Delta z) k_0 \check{n}\check{r}(\boldsymbol{\rho}, z)]$$

Berry, Proc. Roy. Soc. London, 1984

Baladron-Zorita et al, J. Opt. Soc. Am. A, 2019

^{. . .}

$$V(\boldsymbol{\rho}, z) = \frac{R}{R + \Delta z} U\left(\frac{R}{R + \Delta z}\boldsymbol{\rho}, z_0\right) \exp[\mathrm{i}\operatorname{sign}(R + \Delta z) k_0 \check{n} \check{r}(\boldsymbol{\rho}, z)]$$

Gouy Phase: Simulation

Ideal spherical wave (no aberration)

Gouy phase for fundamental Gaussian beam:

Gouy phase for Laguerre-Gaussian beam:

$$: \exp\left[i \arctan\left(\frac{z}{z_{\mathsf{R}}}\right)\right]$$
$$(2p + \ell + 1) \exp\left[i \arctan\left(\frac{z}{z_{\mathsf{R}}}\right)\right]$$

Test: can the HFT propagation formula predict this effect?

$$V(\boldsymbol{\rho}, z) = \frac{R}{R + \Delta z} U\left(\frac{R}{R + \Delta z}\boldsymbol{\rho}, z_0\right) \exp[\mathrm{i}\operatorname{sign}(R + \Delta z) k_0 \check{n} \check{r}(\boldsymbol{\rho}, z)]$$

Mapping: $\rho' \rightarrow -\rho$ Mapping in polar coordinates: $\begin{cases} \rho &= \rho' \\ \varphi &= \varphi' + \pi \end{cases}$

Gouy phase for Laguerre-Gaussian beam: $(2p + \ell + 1) \exp\left[i \arctan\left(\frac{z}{z_R}\right)\right]$

$$V(\boldsymbol{\rho}, z) = \frac{R}{R + \Delta z} U\left(\frac{R}{R + \Delta z}\boldsymbol{\rho}, z_{0}\right) \exp[\mathrm{i}\operatorname{sign}(R + 2 - \mathbf{\rho})]$$
Mapping in polar coordinates:
$$\begin{cases} \rho = \rho' \\ \varphi = \varphi' + \pi \end{cases}$$

$$\begin{cases} \rho = \varphi' \\ \varphi = \varphi' + \pi \end{cases}$$

Gouy phase for Laguerre-Gaussian beam: $(2p + \ell + 1) \exp\left[i \arctan\left(\frac{z}{z_R}\right)\right]$

Funding: European Social Fund (ESF) (2017 SDP 0052) & (2017 SDP 0049)