

SPIE Optics & Photonics, 12 August 2019

Physical-Optics-Based Tolerance Analysis for Fiber Coupling Systems

Huiying Zhong¹, Wenxiu Wang¹, Site Zhang², Christian Hellmann³, and Frank Wyrowski²

- ¹ Applied Computational Optics Group, Friedrich-Schiller-Universität Jena
- ² LightTrans International UG
- ³ Wyrowski Photonics GmbH

SPIE Optics & Photonics, 12 August 2019

Physical-Optics-Based Tolerance Analysis for Fiber Coupling Systems

Huiying Zhong¹, Wenxiu Wang¹, **Site Zhang²**, Christian Hellmann³, and Frank Wyrowski²

¹ Applied Computational Optics Group, Friedrich-Schiller-Universität Jena

² LightTrans International UG

³ Wyrowski Photonics GmbH

Jena, Germany

LightTrans International

University of Jena

Wyrowski Photonics

Optical Design Software and Services

Modeling of Fiber Coupling Systems

R. Shi, *et al.*, "Physical-optics propagation through curved surfaces," J. Opt. Soc. Am. A 36, 1252-1260 (2019)

free

nonlinear

S. Zhang, *et al.*, "Propagation of electromagnetic fields between non-parallel planes: a fully vectorial formulation and an efficient implementation," Appl. Opt. 55, 529-538 (2016)

Typical Application Scenarios

- How to find the optimal working distance for off-the-shelf fiber coupling lenses
- Compare the performances of different commercially available lenses
- Design a coupling lens with parametric optimization
- Perform tolerance and sensitivity analysis of fiber coupling setup

Typical Application Scenarios

- How to find the optimal working distance for off-theshelf fiber coupling lenses
- Compare the performances of different commercially available lenses
- Design a coupling lens with parametric optimization
- Perform tolerance and sensitivity analysis of fiber coupling setup

Optimal Working Distance for Coupling Light into Single-Mode Fibers

Modeling Task

LightTrans International

Focal Distance Found by Using Ray Tracing

Field Tracing Evaluation at Ray-Optics Focal Distance

Field Tracing – Connecting Field Solvers

Find Optimal Working Distance by Using Field Tracing

Evaluation at Optimal Working Distance

R. Shi, *et al.*, "Physical-optics propagation through curved surfaces," J. Opt. Soc. Am. A 36, 1252-1260 (2019)

free

nonlinear

S. Zhang, *et al.*, "Propagation of electromagnetic fields between non-parallel planes: a fully vectorial formulation and an efficient implementation," Appl. Opt. 55, 529-538 (2016)

Typical Application Scenarios

- How to find the optimal working distance for off-the-shelf fiber coupling lenses
- Compare the performances of different commercially available lenses
- Design a coupling lens with parametric optimization
- Perform tolerance and sensitivity analysis of fiber coupling setup

Comparison of Different Lenses for Fiber Coupling

Simulation Results

Simulation Results

Peak into VirtualLab Fusion

Typical Application Scenarios

- How to find the optimal working distance for off-the-shelf fiber coupling lenses
- Compare the performances of different commercially available lenses
- Design a coupling lens with parametric optimization
- Perform tolerance and sensitivity analysis of fiber coupling setup

Parametric Optimization of Fiber Coupling Lenses

Design Task

Evaluation of Initial Lens

Parametric Optimization

initial lens parameters

- radius of curvature **R**=1.7mm
- conical constant **k**=0
- lens thickness **t**=0.8mm

parametric optimization of coupling efficiency with downhill simplex algorithm

optimized lens parameters

- radius of curvature **R**=1.704mm
- conical constant **k**=-0.67278
- lens thickness *t*=0.841mm

Typical Application Scenarios

- How to find the optimal working distance for off-the-shelf fiber coupling lenses
- Compare the performances of different commercially available lenses
- Design a coupling lens with parametric optimization
- Perform tolerance and sensitivitiy analysis of fiber coupling setup

Tolerance Analysis of a Fiber Coupling Setup

Coupling Efficiency vs. Fiber End Position Shift

Coupling Efficiency vs. Coupling Lens Tilt

R. Shi, *et al.*, "Physical-optics propagation through curved surfaces," J. Opt. Soc. Am. A 36, 1252-1260 (2019)

S. Zhang, *et al.*, "Propagation of electromagnetic fields between non-parallel planes: a fully vectorial formulation and an efficient implementation," Appl. Opt. 55, 529-538 (2016)

Benefits

- All-in-one software platform with ray tracing and field tracing (physical optics modeling)
- Accurate calculation of field in focal region and therefore also of the fiber coupling efficiency
- Parametric design of coupling lens or direct import from Zemax OpticStudio
- Full tolerance analysis including shift and tilt of fiber end position
- Handling of special-cut / microstructured fiber end

