

SPIE Optics & Photonics, 13 August 2019

Modeling of Diffractive/Meta-Lenses using Fast Physical Optics

Frank Wyrowski¹, Site Zhang², Liangxin Yang¹, and Christian Hellmann³ ¹ Applied Computational Optics Group, Friedrich-Schiller-Universität Jena ² LightTrans International UG ³ Wyrowski Photonics GmbH

SPIE Optics & Photonics, 13 August 2019

Modeling of Diffractive/Meta-Lenses using Fast Physical Optics

Frank Wyrowski¹, **Site Zhang**², Liangxin Yang¹, and Christian Hellmann³ ¹ Applied Computational Optics Group, Friedrich-Schiller-Universität Jena ² LightTrans International UG ³ Wyrowski Distances Combility

³ Wyrowski Photonics GmbH

Jena, Germany

LightTrans International

University of Jena

Wyrowski Photonics

Optical Design Software and Services

Emphasis of the common theoretical background for different types of microstructured layers

Unifying Approach – Wavefront Surface Response

- For plane surfaces we found $\nabla_{\perp}\psi^{\rm in}(\rho)=\nabla_{\perp}\psi^{\rm out}(\rho)$ and in conclusion

 $\boldsymbol{U}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\mathsf{in}})\boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right).$

• By introducing the wavefront surface response we assume an effect at the surface of the form

$$\boldsymbol{U}_{\perp}^{\text{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\mathsf{in}}) \boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right)$$

with

$$\psi^{\mathsf{out}}(\boldsymbol{\rho}) = \psi^{\mathsf{in}}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})$$

$$\begin{split} & \boldsymbol{V}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) = \boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \exp\bigl(\mathrm{i}\psi^{\mathrm{in}}(\boldsymbol{\rho})\bigr) \\ & \text{with } \boldsymbol{\rho} \mathrel{\mathop:}= (x,y) \end{split}$$

and thus

$$\nabla_{\perp}\psi^{\mathsf{out}}(\boldsymbol{\rho}) = \nabla_{\perp}\psi^{\mathsf{in}}(\boldsymbol{\rho}) + \nabla_{\perp}\left(\Delta\psi(\boldsymbol{\rho})\right)$$

How to Realize Wavefront Surface Response (WSR)?

$$\begin{split} & \boldsymbol{V}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) = \boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \exp\bigl(\mathrm{i}\psi^{\mathrm{in}}(\boldsymbol{\rho})\bigr) \\ & \text{with } \boldsymbol{\rho} := (x,y) \end{split}$$

 From a physical-optics point of view the question arises, if there exists any manipulation of the structure of the surface, which provides an effect of the form:

 $\boldsymbol{U}_{\perp}^{\text{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})\right)$

- A detailed answer can only be given for a specific surface structure.
- By introducing microstructured layers onto the surface a wavefront surface response can be implemented:
 - Graded-index layer
 - Volume hologram layer
 - Diffractive layer
 - Metamaterial layer

Diffractive layer

... with application to lenses

Physical Optics Modeling: Diffractive Layer

• In general a wavefront surface response $\Delta \psi(\rho)$ leads to the equation $\nabla_{\perp} \psi^{\text{out}}(\rho) = \nabla_{\perp} \psi^{\text{in}}(\rho) + \nabla_{\perp} (\Delta \psi(\rho))$ and because of the local plane wave assumption (homeomorphic zone) into

$$oldsymbol{\kappa}^{\mathsf{out}}(oldsymbol{
ho}) = oldsymbol{\kappa}^{\mathsf{in}}(oldsymbol{
ho}) + oldsymbol{K}(oldsymbol{
ho})$$

with $\boldsymbol{K}(\boldsymbol{\rho}) \stackrel{\text{def}}{=} \nabla_{\perp} (\Delta \psi(\boldsymbol{\rho})).$

This equation is directly related to a locally formulated grating equation

$$\boldsymbol{\kappa}^{\mathsf{out}}(\boldsymbol{\rho}) = \boldsymbol{\kappa}^{\mathsf{in}}(\boldsymbol{\rho}) + m\left(2\pi/d_x(\boldsymbol{\rho}), 2\pi/d_y(\boldsymbol{\rho})\right)$$

with the local grating period $d(\rho) = (d_x(\rho), d_y(\rho))$.

• That leads to the basic principle of a diffractive layer via:

$$\boldsymbol{d}(\boldsymbol{\rho}) = 2\pi \left(\left(\partial \psi(\boldsymbol{\rho}) / \partial x \right)^{-1}, \left(\partial \psi(\boldsymbol{\rho}) / \partial y \right)^{-1} \right)$$

Wavefront Surface Response of Focusing Lens

• In order to transform a plane incident field into a spherical convernegt one the wavefront surface response should be:

Structure Design

- Wrap the WSR: $(\Delta \psi(\boldsymbol{\rho}))^{\mathsf{DOE}} = \mod_{p2\pi} \left\{ k_0 n \left(f \sqrt{\|\boldsymbol{\rho}\|^2 + f^2} \right) \right\}$ with $p \in \mathbb{N}$.
- For p = 1 local radial period follows with $d(\rho) = 2\pi/\Delta\psi'(\rho)$.
- Structure design by inverse Thin Element Approximation (TEA): The height profile h^{DOE} is given by:

LightTrans International

LightTrans International

Amplitude Ex

Amplitude Ey

Amplitude Ez

• Amplitudes in Focus (Same scaling!)

LightTrans International

LightTrans International

Amplitude Ex

Amplitude Ey

Amplitude Ez

• Amplitudes in Focus (Same scaling!)

Amplitude Ex

Amplitude Ey

Amplitude Ez

• Amplitudes in Focus (Same scaling!)

Combination of OpticStudio® and VirtualLab Fusion

Complementary workflows

Inclusion of Higher Orders: On-Axis

Electric Energy Density $[1E6 (V/m)^2]$ 1.3 20 0 [mr] 7 ۲ 0.648 -20 3....E-05 -20 20 0 X [µm]

simulation time per order ~seconds

+1st diffraction order

Electric Energy Density

 $[1E3 (V/m)^2]$

-30 -20 -10 0 10 20 30 X [µm]

0th diffraction order

T -20 -30 -10 0 10 20 30 X [µm]

Electric Energy Density

 $[(^{V}/_{m})^{2}]$

64.8

33.1

1.51

20

-1st diffraction order

LightTrans International

Results: MTF for Various Diffractive Lens Structures

Metasurfaces

Realization of wavefront surface responses by nanostructured layers

Physical Effects for Realizing Metasurfaces

- Propagation phase delay
 - Centrosymmetric (polarization insensitive)

P. Lalanne *et al.*, J. Opt. Soc. Am. A **16**, 1143-1156 (1999).

 Rotationally asymmetric (form birefringence)

> M. Khorasaninejad *et al.*, Science **352**, 1190-1194 (2016).

 Resonance phase delay

N. Yu *et al*., Science **334**, 333–337 (2011).

Y. F. Yu *et al.*, Laser Photonics Rev. **9**, 412-418 (2015).

Physical Optics Modeling: Metasurface Layer

• In general a real surface layer structure does not just realize the desired wavefront response but additional effects and fields:

 $\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \left\{ \mathbf{B}(\boldsymbol{\rho}; \psi^{\text{in}}) \boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho}) \right) + \boldsymbol{V}_{\perp}^{\text{res}}(\boldsymbol{\rho})$

• For nanofin-based metalayers the typical result can be written as:

$$\begin{aligned} \boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) &= \left\{ \mathbf{B}^{+}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})\right) \\ &+ \left\{ \mathbf{B}^{-}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) - \Delta\psi(\boldsymbol{\rho})\right) \end{aligned}$$

M. Khorasaninejad *et al.*, Science **352**, 1190-1194 (2016).

Physical Optics Modeling: Metasurface Layer

In general a real surface layer structure does not just realize the desired wavefront response but additional effects and fields:
 Calculation by Fourier

 $oldsymbol{V}^{ ext{out}}_{\perp}(oldsymbol{
ho}) = \left\{ oldsymbol{\mathsf{B}}(oldsymbol{
ho};\psi^{ ext{in}})oldsymbol{U}^{ ext{in}}_{\perp}(oldsymbol{
ho})
ight\}$

• For nanofin-based metalayer a.k.a. RCWA an be written as:

modal method (FMM),

$$\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \left\{ \mathbf{B}^{+}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})\right) \\ + \left\{ \mathbf{B}^{-}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) - \Delta\psi(\boldsymbol{\rho})\right)$$

M. Khorasaninejad *et al.*, Science **352**, 1190-1194 (2016).

Rigorous Analysis of Nanopillar Metasurface Building Block

Modeling Task

Nanopillar Analysis vs. Pillar Diameter

nanopillar #1

🛃 35: Analysis of Nanopillar @532nm - • × Numerical Data Array Diagram Table Value at x-Coordinate 8 Efficiency [%] Phase 60 0 [rad] 40 20 Efficiency Phase 20 25 30 5 10 15 Iteration Step

nanopillar #2

nanopillar #3

Nanopillars No.	#1 (405nm)	#2 (532nm)	#3 (660nm)
U	180nm	250nm	350nm
Н	400nm	600nm	600nm
D (variable)	80-155nm	100-220nm	100-320nm

Nanopillar Analysis vs. Pillar Diameter

- The phase modulation covers 2π range, and it changes almost linearly with pillar diameter, which enables convenient phase control.
- The transmission efficiency remains above 90% for varying pillar diameter over the design range.

Nanopillars No.	#1 (405nm)	#2 (532nm)	#3 (660nm)
U	180nm	250nm	350nm
Н	400nm	600nm	600nm
D (variable)	80-155nm	100-220nm	100-320nm

🛃 35: Analysis of Nanopillar @532nm - • × Numerical Data Array Diagram Table Value at x-Coordinate 8 Efficiency [%] 09 Phase [rad] 4 20 Efficiency ŵ Phase 5 10 15 20 25 30 Iteration Step

nanopillar #2

Form Birefringence Analysis

Nanofin Structural Designs

Spectral Analysis for Nanofin – 405nm Design

Angular Analysis for Nanofin – 405nm Design

 B-matrix for metasurface building block

$$\left(\begin{array}{cc} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{array}\right) \,.$$

• Ideally, it should function as a half-wave plate, i.e.

 $b_{xy} \approx 0 ,$ $b_{yx} \approx 0 ,$ $b_{xx} \approx -b_{yy} .$

Modeling of A Polarization-Dependent Metalens

High-NA Metalens Simulation

High-NA Metalens Simulation

High-NA Metalens Simulation

VirtualLab Fusion – Connecting Field Solvers

