Friedrich-Schiller-Universität Jena

Numerical Analysis of Tightly Focused Beams for Confocal Microscopy Illumination by Real Lens Systems

Rui Shi^{1,2}, Site Zhang², Christian Hellmann^{2,3}, and Frank Wyrowski¹ 1 Applied Computational Optics Group, Friedrich Schiller University Jena, Jena, Germany, 2 LightTrans International UG, Jena, Germany, 3 Wyrowski Photonics UG, Jena, Germany,

Background: Conventional Confocal Microscopy and STED

Conventional Confocal Microscopy

STimulated Emission Depletion (STED)

Motivation: Conventional Confocal Microscopy and STED

- Illumination spot is essential for analyzing the image quality.
- Ray tracing is very limited. The polarization, diffraction need to be included.
- Debye-Wolf integral is widely used, but very often limited to idealized aplanatic lens without aberration.

What is the illumination spot when a real lens is applied?

Definition of Quantities

• Illumination spot is defined as the electric energy density:

$$w_e \propto ||\mathbf{E}||^2 = |E_x|^2 + |E_y|^2 + |E_z|^2,$$

• Deviation:

$$\sigma = \frac{\sum_{x,y} |f^{\text{Eva}}(x,y) - f^{\text{Ref}}(x,y)|^2}{\sum_{x,y} |f^{\text{Ref}}(x,y)|^2}$$

Modeling Task 1: Conventional Confocal Microscopy

Modeling Task 2: STED

Fully Vectorial Modeling in the Framework of Field Tracing

Fully Vectorial Modeling in the Framework of Field Tracing

Fully Vectorial Modeling in the Framework of Field Tracing

Validation of LPIA

R. Shi, C. Hellmann, and F. Wyrowski, J. Opt. Soc. Am. A 36, (2019).

Validation of LPIA

R. Shi, C. Hellmann, and F. Wyrowski, J. Opt. Soc. Am. A 36, (2019).

Simulation Results via VirtualLab Fusion

Conventional Confocal Microscopy

Focal Spot by Radially Polarized Beam

several seconds

Distorted Focal Spot with Lateral Shift of Source

several seconds

Distorted Focal Spot V.S. Experimental Results

[Yang et al. (2013)]

STED

Focal Spot by Circularly Polarized Gaussian Laguerre Beam

Summary and Conclusion

- We do the fully vectorial physical-optics modeling of the complex illumination system for conventional confocal microscopy and STED.
- We analyze the influence of the focal spot with lateral misalignment of the source for the conventional confocal microscopy. And we find that it influences more in the case of annular aperture.
- We analyze the influence of the chromatic aberration for the STED. And we find that it can be compensated by the axial shift of the STED source.

