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Wyrowski Photonics

Wyrowski Photonics
Development of fast
physical optics software
VirtualLab Fusion
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Optical Design Software and Services

Hall B1, 209
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Physical-Optics System Modeling by Connecting Field Solvers

Field Solver
Prisms, ...

Field Solver

: Gratings, ...
Field Solver

Lenses, ...

Field Solvef Micro-
and Nano-
structures
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Physical-Optics System Modeling: Regional Field Solvers

nonlinear

components
crystals & anisotropic

components I

waveguides & fibers

scatterer

free space
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. lenses & freeforms
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Field Solvers
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diffractive beam splitters l l diffractive, Fresnel, meta
lenses

SLM & adaptive
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Physical-Optics System Modeling by Connecting Field Solvers

-

o

VirtualLab Fusion is a unified
software platform incorporating
various field solvers

~

/

nonlinear free
crystals & components space prisms,
anisotropic plates,

components cubes, ...
waveguides lenses &
& fibers ~ freeforms
) apertures &
scatterer Field boundaries
Solvers

diffusers '( \‘ gratings
diffractive diffractive,

beam Fresnel, meta
splitters lenses
SLM&  icro lens & HOE, CGH,
adaptive  graatorm DOE
components arrays
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VirtualLab Fusion — Summer Release 2019

Field Solver

Prisms, ...

;‘\

o &7 & Field Solver
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Gratings, ...

Field Solver
Micro- and Nano-
structures
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VirtualLab Fusion — Summer Release 2019

VirtualLab Fusion
Summer Release 2019

nonlinear free
crystals & compon... space
anisotropic prisms, plates,
components cubes, ...
waveguides & lenses &
fibers freeforms
scatterer apertures &
Field boundaries

Solvers

diffusers gratings

diffractive beam diffractive,

splitters Fresnel, meta
SLM & adaptive s
componeir)]ts micro lens & HOE, CGH, BB?:E

freeform arrays
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VirtualLab Fusion — Summer Release 2019

mm’lﬂi

Microstructure
Components Modeling

= Modeling of
microstructure
components beyond
paraxial situtation

= Combined use with
general input field

= Typical use for diffractive
diffuser system modeling

Diffractive Lens

= Complementary workflow
with Zemax OpticStudio

= Directimport of e.g.
Binary 2 surface

= Modeling based on real
diffractive lens surface
structures

= Export for fabrication

n29'?

Metalens

= Unified software platform
with both rigorus analysis
of nano structures, and
also whole lens modeling

= Rigorous Fourier modal
method (FMM) for
unit cell modeling
with friendly structure
configuration

Integral Method for
Grating Modeling

= |n-built model for
rectangular/slanted
gratings with rounded
edges

= Faster convergence than
other technigues

= Suitable for fabrication
tolerance analysis

Crating Components in
GCeneral Optical Setup

= Rigorous modeling based
on in-built Fourier modal
method (FMM/RCWA)

= Use together with other
components in general
optical setups

= Arbitrary orientation

Simulation Engine
Improvement

= Automatized sampling
algorithm for free-space
propagation

= Robust handling of aber-

rated wavefront phases

= Unified algorithm for
propagation between
tilted planes as well

....and more at our booth

Hall B1, 209
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Parametric Optimization and Tolerance Analysis of
Slanted Gratings



Modeling Task

episulfide
slant angle material
(p_,) / n=1.716 @532nm
; T+1
- /
input plane wave \
g o g T
along y direction /
period I /C/ filling factor
d=405nm (fixed) /I c/d=?
/I\
e
depth X

h="7? ’[
Z

How to optimize the T, order diffraction
efficiency, by adjusting the slant angle ¢,
grating depth h, and filling factor ¢/d?

- rounded
. slope edges
J deviation

PR

I

¢ = (¢q ¥ ©2)/2

In addition, how to evaluate the grating performance
with the slope deviation and the rounded edges due to
the fabrication technique taken into account?

14
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Parametric Optimization for 18t Order

initial structure

optimized structure

H : Efficien +1; 0] of Grating Order Analyzer vs. Simulation 5te -
| 28: Efficiency T[+1; 0] of Grating Order A ::mn:i:?[]at:mmly Step =n = < /
Diagram Table Value at x-Coordinate
£ " 5 -0 p=34°L—"]
0 C c/d=50% -8 W " ¢cld=57%
s ¢ 2 =[5+
I [CR= 10 i
° 2. T
qi'w - o /
I—+ o | /
m 5 10 15 20 25 30 33 40 45 50 55 60
optimization setup h=324nm
Order Efficiency parametric optimization — downhill simplex Order Efficiency
1 11.551% method — with rigorous Fourier modal method . 3.257%
0 72 795% (FMM) used for grating efficiency calculation 0 0.365%
+1 11.551% +1 93.659%
15 LightTrans International UG



Results — Tolerance Analysis

The fabricated slanted gratings often shows
a deviation from the perfect parallel grating
lines. Such slope deviations should be taken
into account for the tolerance analysis.

E= 16: Tolerance Analysis E=rl e @

Numerical Data Array

fixed average slant angle
¢ = (g1 +¢2)/2 =34°
fixed filling factor (average)
c/d=57%

varying ¢, from 34 to 44°

Diagram Table Value at x-Coordinate

Slightly higher efficiency is due to additional
parameters introduced in the tolerance analysis.

95

Efficiency T[+1; 0] [%]

T T T T T T T T T
35 36 37 38 39 40 41 42 43

slant angle ¢, [°]

Rigorous simulation with Fourier modal method
(FMM), for tolerance analysis over 50 steps, takes
30 seconds.

LightTrans International UG




Results — Tolerance Analysis

The fabricated slanted gratings often shows B 4 Tolerance Analysis ===
a deviation from the perfect parallel grating - e
. agram | Table | Value at x-Coordinate
lines. The rounded edges should be taken -
into account for the tolerance analysis. Z o
::E? .. | over 85%
E/ % 2
p=34° £
]
C/d=57(y 1 T T T T T T T T T T
g ° ) flxed average Slant angle j 20 25 30 35 40 45 50 35 60 65
S P =4 ded ed
N - fixed filling factor rounded edge r [nm]
© c/d=57% : : : :
- varying r from 15nm 70nm Rigorous simulation with Integral Method (IM), for
tolerance analysis over 30 steps, takes 9 seconds.
f———
h=324nm
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Rigorous Analysis of Nanopillar Metasurface Building
Block



Modeling Task

f_l/\\ metalens

parameters from M. Khorasaninejad,
Nano Lett. 2016, 16, 7229-7234

Nanopillars No.  #1 (405nm) #2 (532nm)  #3 (660nm)

U 180nm 250nm 350nm
H 400nm 600nm 600nm
™y D (variable) 80-155nm  100-220nm  100-320nm

D nanopillar
: diameter . : .
uniteell g By varying the nanopillar diameter, the
dimension = - .

7 metasurface building block is supposed to

9 nanopillar have phase modulation covering 2. How to

1 IF k H he'ght,| evaluate such nanopillar structure rigorously?

\ J

single nanopillar as the
building block of the metasurface

19 LightTrans International UG



Nanopillar Analysis vs. Pillar Diameter

nanopillar #1

nanopillar #2

nanopillar #3

H 26: Analysis of Nanopillar @405nm EIIEI H 3% Analysis of Nanopillar ®532nm EI@ H 41: Analysis of Nanopillar @660nm EIIEI
Mumernical Data Array Mumerical Data Array Mumernical Data Array
Diagram  Table = Value at x-Coordinate Diagram  Table = Value at x-Coordinate Diagram  Table = Value at x-Coordinate
£ g X = R g e =z £ g P 3
5 4 ' = yd 2 z - E
g pd 3 / = 5 :
g ya V = £ ¢ 7 = &~ N
- !
2 L ./ ° L ./ =g L A ./
= Efficiency = w Efficiency = Efficiency v
== Phase == Fhase <L/ == Phase V
5 'IID 'IIS 2ID 2I5 3Il} :; 10 'IIS 2ID 2I5 3ID 5 'IID 'IIS 2ID 2I5 3Il}
lteration Step lteration Step [teration Step
Nanopillars No.  #1 (405nm) #2 (532nm)  #3 (660nm)
U 180nm 250nm 350nm
H 400nm 600nm 600nm
D (variable) 80-155nm 100-220nm  100-320nm
20 LightTrans International UG




Nanopillar Analysis vs. Pillar Diameter

- The phase modulation covers 2r range, and it
changes almost linearly with pillar diameter,

which enables convenient phase control.

- The transmission efficiency remains above 90%
for varying pillar diameter over the design range.

Nanopillars No.  #1 (405nm) #2 (532nm)  #3 (660nm)

U 180nm 250nm 350nm
H 400nm 600nm 600nm
D (variable) 80-155nm 100-220nm  100-320nm

nanopillar #2

;:.l 35 Analysis of Nanopillar @332nmm o | [ |
Mumerical Data Array
Diagram Table Value at x-Coordinate
T
o | i
oz
£ g [ =
- o
o / ‘ o @
z =
S o / 2
E T 7 LT
D -1 1
™ | w—" Efficiency =
w— Fhase .
T — T T T T e
5 10 15 20 25 30
lteration Step
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Peek into VirtualLab Fusion

flexible pillar structure definition

Edit Stack *
ﬁ E=. & Analysis of Nanopillar @532nm =N ==
O Mumerical Data Array
a Diagram Table = Value at x-Coordinate
o Edit Grating Order Analyzer o
&
General  Single Orders o ra
(k] e
E—T Order Selection Strategy T A -
= 3 =
X Selection Strategy | Order Range = / =] §
Index | z-Distance | z-Position Interface Subsequent Medium Com % s // g
» 1 0 mm 0 mm Plane Interface Mon-Dispersive Materi Enter your commen X E / =
2 6D0nm 600 nm Programmable Interfac Air in Homogeneous M Enter your commen Minimum Order | DE‘ | ] .
S | m—amplitude ~
Source Code Editor O x Mazximum Order | DE‘ | w— Phase / :
Source Code  Global Parameters  Snippet Help  Advanced Settings 0I1|2 0.1I4 0.1IG 0.1Ia 0.I2
i Coordinat : i
é 1 [ | double height = ©.8; EZQ:@S::?;:? EEEE:Z} oordin els . Diameter (Nanopillar @532nm #1 | Stack #1 (Progr... [pm]
|2 x [double] [] Spherical Angles [] Cartesian Ang
e f// convert to radial distance y [double]
2 | a double rho = Math.Sgre(x * x + y * y); Diameter [double] (] Wave Vector Components [ ] Positions .
|5 | [z <o * piameten Het [doutle] access to full vectorial
6 {
3|7 height - Height; and complex-valued
£ 8 } Efficiencies . .
S| _ | information
18 return height; Rayleigh Coefficients
7 Ex HE (e
customized structure LITe LI
via programming
Gl | [0
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Design of Diffractive Beam Splitters
for Generating a 2D Light Mark



Design Task

How to find a phase-only diffractive
beam splitter that generates the

= desired pattern on the target plane?
’1\ (Binary phase is required in this example.)

input /)

target pattern

0.8mm

L

1mm

7

---------

j order separation on
0.8mm target plane: 1mm

.........

wavelength: 532nm
profile: fundamental Gaussian
diameter (waist): 0.5mm

|( 35mm

24
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Design Task

How to find a phase-only
beam splitter that generat

m  desired pattern on the tar
’1\ (Binary phase is required in this €

input /)

f 250mm

0.8mm
1mm;
J order separation on
0.8mm target plane: 1mm
wavelength: 532nm ’
profile: fundamental Gaussian mm 35mm
diameter (waist): 0.5mm
25 LightTrans International UG



Results

« Designed binary-phase for beam splitter

Beginning with different random phase
distributions on the target plane, the iterative
Fourier transform algorithm (IFTA) calculates
different possible design results.

V'\

f

\

=8 ol =

12: Result Phase-only Transmission

EI@ a View

ﬂ 9: Result Phase-only Transmission
Data View

transmission #2

transmission #1
. - -

57
57
. 100 designs delivered
i 3.4 -66.875 65.805 ' H H
seosum within 200 seconds!
- — Es Matrix Transmission Phase Zoom: 2.1048 (124, 124) .
Jones Matrix Transmission Phase Zoom: 19919  (124;124) (2 Seconds per deS|gn)
Jones Matrix Transmission Phase Zoom: 2.1048 (124; 124)

26
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Results

 Performance evaluation

p
3 20: Camera Detector (17 [r=o]E ) 4E|@
Chromatic Fields Set (B0 H=R =<

532 nm - [(V/m)*2]

0.027 ey

0.027

0.0135

0.0135
0.0135

Fast physical-optics Merit functions Design #1 Design #2  Design #3

simulation of the complete conversion 65.92% 66.38% 64.71%
optical system gives efficiency
access to muItipIe merit uniformity error 4.31% 3.69% 6.76%
functions at once. stray light 3.99% 5.17% 3.11%

27 LightTrans International UG



Diffraction Pattern Calculation from a Reflection-Type
Diffractive Beam Splitter



Modeling Task

Height Values [pm] €

0

-0.0665

-20 0 20

x [um]

diffracted pattern
input field analysis for tilt angles

- Gaussian profile 6 = 0°,10° 15°
- wavelength 532nm
- half-angle divergence 0.1°

1.5m

29 LightTrans International UG



Diffracted Pattern in Detector Plane

B 12: theta = 0°

MNumerical Data Array

=1 Bl =)

Diagram  Table Value at fey)

Energy Density [1E-5 (V/m)*2]

Y [mm]
o] 25

-25

=L 0

Bl 15: theta = 0°

S
I

E=, 13: theta = 10°

Mumerical Data Array

[E=1 EoR =)

Mumerical Data Array

Diagram

Energy Desity [1E-5 (V/m)™2|
05 1 15 2 25 3 35 4 45

Table Value at x-Coordinate

AN

Diagram  Table ~Value at fcy)

Energy Density [1E-5 (V/m)”*2]

Y [mm]
o] 25

-25

A 4

-40 -20 ]
X [mm]

20

40

B} 16: theta = 10°

-~

MNumerical Data Array

Diagram

Energy Desity [1E-5 (V/m)*~2]
05 1 15 2 25 3 35 4 45

Table Value at x-Coordinate

DAV

AN,

-40 -20 o

X [mm]

20

40

The beam splitter is designed under normal incidence, and for

small angle (< 10°) it delivers uniformly split diffraction orders.

B=, 14: theta = 15°

(oo )

MNumerical Data Array

Diagram  Table Value at {xy)

Energy Density [1E-5 (V/m)"2]

3
E° 2.5
> Tt ~ ~
- R Y00 -
o T~ ~
Bl 17: theta=15 =N EER =
25 0 MNumerical Data Array
Diagram  Table Value at x-Coordinate Zeroth
X[m ~
- | L~ order
-
5 <
E = |
9 =15° :°
i
= 2
5 -
w - |
UEJ w
]
DAY N

-40 -20 o 20 40

X [mm]

The efficiency of zeroth order exceeds
other orders, when 6 increases to 15°.
Such situation shall be avoided in practice.

30
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Peek into VirtualLab Fusion

Edit Microstructure Component *
Solid  Boundary Operator
;@' Operator Works on . (®) Front Side () Back Side
%ﬁmﬁg" Operator Specified by _. (C) Complex Surface Response (® Stack
B || Zhees Microstructure Component is
mpi rating
Fosvons || [ = T used to configure the
Method for Stack Analysis Parabasal Thin Element Approximation ~ ~ [1-2] d Iﬁractlve beam S pI Itte r.
@ Pl e | 1| | ! | Edit Sampled Interface >
Structure /
Function Structure  Height Discortinuities  Scaling of Elementary Intefface  Periodization
;;r Sanpied Heght e The microstructure can be defined
= Set Sh : .
Propagation > by a.n Imported data matrlx.
Channels Height Prcfile Type
interpolation Method e - E=: 28: Sampled Heightpr:file o == =R~
umerical Data Array
Diagram Table Walue at (xy)
Inner Defirition Area [l Height Values [pm]
Size and Shape 0
Shape (@) Rectangular () Elliptic
Size | 724um| x | 724m /
Effect on Field Outside of Defintion Area _
=
3 -0.066...
[1] Jari Turunen et al., “Storage of multiple images in a ~
th|n Synthetic Fou rier holog ram”’ Position of Sumrounding Interface Plane
Optics Communications, 84(5-6), 383-392 (1991)
[2]Huiying Zhong et al., “Parabasal thin-element o ; 013296
approximation approach for the analysis of s
microstructured interfaces and freeform surfaces,”
J. Opt. Soc. Am. A 32, 124-129 (2015)
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Design and Rigorous Analysis of Non-Paraxial
Diffractive Beam Splitter



Design Task

How to design and optimize diffractive beam splitters
that work beyond paraxial condition, especially with
- zeroth-order diffraction under control?

50

30°

L.

input beam
wavelength 632.8nm

binary DOE

- fused silica
- pixel size 300x300nm

33 LightTrans International UG



Results

* Phase-only transmission design
[with iterative Fourier transform algorithm (IFTA)]

functional
plane

..

/

\

7] 7: D:AOneDrive\..\FileNameD14.ca2
Data View

design #1 — phase function

-

-3.8 pm

3.8 pm

34pum

Jones Matrix Transmission Phase

=N o ==

-1.57

-394

Zoom:13.722  (18:18)

oo ]

7] 8 D:\OneDrive\...\FileName75.ca2
Data View

design #2 — phase function

0
=

157
A 314

-3.8 pm 3.4 pm

4 um

8 pm

Jones Matrix Transmission Phase Zoom: 13722 (18 18)

7] 2: D:\OneDrive\...\FileName80.ca2
Data View

design #3 — phase function

3.8 pm 34pum

Jones Matrix Transmission Phase

=N o ==

7

4

Zoom:13.722  (18:18)

With differently random phase distributions as
starting points, IFTA calculates different
possible design results. 3 designs are selected
out of 100 according to customized criteria.

delivery of 100 designs
within 20 seconds!

34
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Results

e Structure design
[with thin-element approximation (TEA)]

real micro AX
structures | .

Automatic conversion from phase-only
transmission to structure height profile,
according to given wavelength and material.

N\

B 13: DAOneDrive\...\Height Profile 014.da

Numerical Data Array

oo ]

[=i, 14: D:\OneDrive)...\Height Profile 075.da

=N o ==

Mumerical Data Array

B, & DA\OneDrive\...\Height Profile 080.da

Numerical Data Array

oo ]

Diagram  Table  Value at bey)

design #1 — height profile [um]

Diagram  Table Value at {xy)

design #2 — height profile [um]

0.692
e
° 0.346
e
0
-2 0 2

X [um]

y [um]

Diagram  Table  Value at bey)

design #3 — height profile [um]

o
< 0.346
e
ol X
-z 0 2

X [um]

y [um]
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Results

« Performance evaluation with TEA

Merit functions Design #1  Design #2 Design #3

real micro AX
structures 2

total efficiency 69.057% 68.068% 69.613%
: - average efficiency  1.4093% 1.3892% 1.4207%
: g y
: — zeroth efficiency 1.4888% 1.4888% 1.4704%
(zeroth order error) (5.6374%) (7.1723%) (3.5%)
uniformity error 14.422% 12.266% 12.989%
I'e \
4% 14 Transmission Result - Grating Order Analyz.. E@ #%2 18: Transmission Result - Grating Order Analyz... EI@ #}% 22: Transmission Result - Grating Order Analyz.. E@
Grating Efficiencies Grating Efficienci es Grating Efficiencies
design #1 — efficiency [%] design #2 — efficiency [%] design #3 — efficiency [%)]
- _ _ Design #2 seems to
< ; = £ ) give the best uniformity,
o 0.945 +* © 0.825 o 0.94 H
& & o based on the evaluation
= o . T . .
5" 5’ 5 ° results from thin-
v 0 g 0 v 0 element approximation.
order #in x order #in X order #in x BUta is it still true for the
non-paraxial situation?
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Results

« Performance evaluation with Fourier modal method

real micro AX
structures 2

Merit functions Design #1  Design #2  Design #3
total efficiency 72.122% 70.619% 74.311%
average efficiency  1.4719% 1.4412% 1.5165%
— zeroth efficiency 2.5574% 7.011% 2.3324%
(zeroth order error) (73.753%) (386.47%) (53.799%)
uniformity error 21.064% 58.431% 18.946%
\

4

Order Collection

#f 12 D\OneDrive\..\Grating Order Analyzer 014.... E@

Grating Efficiencies

Diagram  Table

design #1 — efficiency [%)]

2.56

128

order#iny

order #in X

4% 17: DAOneDrive\..\Grating Order Analyzer 075.... [-=|[- =1 [e3a]
Order Collection Grating Efficienci es

Diagram  Table

design #2 — efficiency [%)]

7

-

o

o

order #iny

o

-4 -2 0 2 4
order #in X

#f 20: D\OneDrive\...\Grating Order Analyzer 080.... E@

Grating Efficiencies

Order Collection

Diagram  Table

order#iny

design #3 — efficiency [%]

order #in x

With the rigorous
Fourier modal method
(FMM), it turns out that
design #2 produces

0 strong zeroth diffraction
order, resulting in very
poor uniformity in fact.

37
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Results

* Further optimization — zeroth order tuning

FMM evaluation results

Merit functions Design #3  Design #3 gives

total efficiency 74.311% good overall
performance but
still produces

— zeroth efficiency 2.3324% undesired zeroth
* 0
(zeroth order error*) (53.799%) order error.

real micro AX
structures | .

average efficiency  1.5165%

\ 4

uniformity error 18.946%

Ve \ zeroth efficiency — average efficiency

*zeroth order error = —
B, 13: D\OneDrive\...\Height Profile 014.da (=N BRI average eff1c1ency

Numerical Data Array

Diagram  Table  Value at bey)

design #3 — height profile [um] y /\> X

Sometimes, the zeroth order error
—4 can be reduced by tuning the
height height of the binary structure.

38 LightTrans International UG



Results

* Further optimization — zeroth order tuning

real micro AX
structures 2

zeroth order error [%)]

- I
*:
- —
) A
1.0 N0l 1.02 V103 1.04
v height scaling \\
\
'4 \ A \‘J
20 D:AOneDrive\..\Grating Order Analyzer D80.... EI@ 42 35: Transmission Result— Grating Order Analyz... EI@
Grating Efficiencies Grating Efficiencies
Diagram  Table Diagram  Table
y /\) 1.0xheight — efficiency [%] 1.025 x height — efficiency [%]
~ 233 = 233
> >
1= c
:'i: o 1.165 :E ° 1.165
7 o =

B . D o

height ° °©

: scaling from ! ° “' °
des, 4 20 2 4 4 20 2 4
gn #3 1.0 to 1.04x T onder 4 inx
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@HTTRANS N

Working Principle Demonstration of the Dot Projector
with Physical Optics Modeling



Modeling Task

VCSEL Array _
Model: Multi-mode Gaussian Be_am Splitter
(LGO00, LG01, LG02) Aspherical period: 6.5um
Wave|ength: 1|J‘m Lens* diffraction orders: 7 X 7 Detector

Size: 400 X 400um plane

No. of VCSELs: 11 x 11
Full divergence angle: 20°

light distribution
500mm

2.8mm

* THe aspherical lens in the document is designed with OpticStudio LightTrans International UG



Source Modeling

Beam Splitter
Aspherical period: 6.5um
Lens diffraction orders: 7 x 7 Detector

plane

VCSEL Array

0.1
0.8

0.6

0.5

¥ [m]
0

0.4

—)

sketch of the arranged Far field pattern of - I |
VCSEL array a single VCSEL . | 01005 0 005 0T

-0.1

0.2

Cross section
profile along y\= 0

Data for Wavelength of 1pm [(V/m)* 2]

X [m]

Coordinate [m]

42 LightTrans International UG



Simulation with the On-axis VCSEL

Beam Splitter
Aspherical period: 6.5um
Lens diffraction orders: 7 x 7 Detector
VCSEL Source olane

Position: (0, 0)

—

. 3: Dot Pattern

Ray Distribution

Paosition

2.8mm 500mm

0.2
.
L]

— The lens is applied to collimating the
iInput beam

— The beam splitter diffracts the beam . v e . .
into different orders, and irradiance . , ', *
pattern of the orders is obtained on 0.2 0 0.2

X [m]

detector plane

43 LightTrans International UG



Simulation with an Off-axis VCSEL

Beam Splitter
Aspherical period: 6.5um
Lens diffraction orders: 7 x 7 Detector
VCSEL Source plane

Position: (120um, 80um)

B8 &: Dot Pattern
Ray Distribution
Position
Y
- . .
2.8mm 500mm -
. . L] [ . . .
. . . . . - L
L E < 1 . «a & 8 = » .
\

— For off-axis VCSEL, the lens collimates
the input beam with an angle regarding
to the mode’s position

— The irradiance pattern is shifted from the
on-axis case, with respect to the T m
collimated angle of the beam.
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Simulation with All Modes of the VCSEL Array

Aspherical
Lens

Beam Splitter Detector

plane

VCSEL Array

B8 26: Dot Pattern

Ray Distribution

2.8mm 500mm

Simulation results

The beam splitter duplicates < %L

the irradiance pattern of '

different VCSELs with a PR | N

lateral shifted on detector x  ®

plane, and the whole dot g W

pattern is generated. ngE e
Field Tracing Ray Tracing

Position

45
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@HTTRANS N

Design and Analysis of Intraocular Diffractive Lens



Design Task for a Diffractive Lens

Each configuration of the two intraocular lens
requires a certain wavefront surface response

function.

Near View Scenario

A (p) = mAp(p)

Where m = 0 for the far view scenario and
m = 1 for the near view scenario

Far View Scenario

How to design a diffractive lens to
achieve different wavefront effects
for the two configurations?
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Import of Optical System from OpticStudio

@I Online Help
e

Import to Numerical Data Amray
Imports text and images into a Data Amay

Import Harmonic Feld Data from Bitmap File
Imports various image formats (BMP, JPG, PNG, TIF)

Import a Chromatic Fields Set from Bitmap File
Imports various image formats (BMP, JPG, PNG, TIF)

Import Harmonic Feld Data from Text
= Imports various text formats (ASCII, Field Information, PTF, Code V)

Import Old VirtualLab Fles
HD Imports obsolete VitualLab documents (CA, DGR, DIAGRAM, PWF, OPS, RF)

=] Import optiSLang Results
Imports an Optical Setup and the associated parameters optimized by optiSLang

%] Import Zemax System
Imports optical setups from Zemax

(W)

Import Zemax Beam File
Imports beam files in binary format from Zemax

z0 Z:100 Z:1658
Near View: Spherical mm um mm
Wave -
[ ) 601

The configuration of the optical setup as well as the design of
the wavefront surface response by a Binary-2 surface was
generated in OpticSudio.

VirtualLab Fusion provides the capability to import the optical
setups and merge them in a single optical setup configuration.

<#| 4: Optical Setup View #3 (Intraocular Lens System)* |- El| @
| Filter by X |
+)- Light Sources Camera Detector

Coordinate Break
+)- Components

-.\\--/-'

+]- Ideal Components Optical Interface 6502
Camera Detector FarView: Plane Wave  Sequence Diffractive Lens Image Plane /
+- Detectors ) D D O ZZ0mm
+]- Analyzers ' ' ' ' ' . )
0 7 5 6

Spot Size

500

Ray Tracing System
Analyzer

W

800
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Far View: Conformity of OpticStudio Import

Far View
Scenario

PSF calculation with the
ﬁ wavefront surface response by
VirtualLab Fusion

Chromatic Fields Set

spot diagram of central wavelength (555 nm) calculated by:
. ) ) ) Data for Wavelength of 555.1515033 nm [1E6 (V/m)*2]
OpticStudio VirtualLab Fusion e
——x & 1 A A, o g < 0.632
i n“‘ .“A a = o~
: !ni‘l.a.ﬂ. ,“ 'E'
W > ¥
4 ‘.‘A““ _ h o . -'-.....'.' . L — e | ey
. . ' 4 -2 0 2 4
R X [um]
1 e T 1
IMA: 9,000 mm “ 2 0 2 4
K [pm]
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Near View: Conformity of OpticStudio Import

Near View
Scenario

PSF calculation with the
ﬁ wavefront surface response by
VirtualLab Fusion

Chromatic Fields Set

spot diagram of central wavelength (555 nm) calculated by:

Data for Wavelength of 555.15315033 nm [1E6 (W/m)"2]

OpticStudio VirtualLab Fusion o
- -
=i
a 4o, e .
'y A
& i — —_
: : s 0.793
t akda, 1 =
© & ‘A 1 n‘ a E r,"
8 . o . ER 10}
=t a ‘a‘ 4 l; . > -
L ALaak P LN
. N — . . 0.000251
* * ' 4 2 0 2 4
Fy 'y
L. oa K[IJI'T'I]
4 i
IMA: 0,000 mm -2 1 0 1 2
X [um]
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Structure Design: Diffractive Lens Profile Height

« The structure profile of the diffractive
lens is calculated by Thin Element TEA provides directly a very
Approximation (TEA) according to high efficiency for the 1%t order

the wavefront surface response:

A
2w An

hPO% (p) = B=——Adb(p)PO"

with a scaling factor f to modulate
the height and control the efficiency
of the diffraction orders
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Structure Design: Diffractive Lens Profile Height

« A quantization of the structure with 2
height levels is chosen because the
binary diffractive lens

— is beneficial for manufacturing (cost,
easier to fabricate)
— gives a better control of the efficiencies

especially for the 0" and 1st order using
the height modulation approach

o UL
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Structure Design: Height Modulation of 1.00

Far View Near View
Scenario Scenario

UL "

. . li f modulati
 Electric Energy Density [1E2[(V/m)?] scaln%;gmob; aton x Electric Energy Density [LE V/ m)?]
106 g =1.00
E. 0884 Eo
| 0.704 |
X [um]
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Structure Design: Height Modulation of 0.95

Far View Near View
Scenario Scenario

- uum *

scaling of modulation

o Electric Energy Density [1E3|(V/m)?] height by o Electric Energy Density [LE V/ m) ]
639 B =0.95
Eo 3'21 | ..
> >
| 0.0308 |
-10 -5 0 5 10
X [um] X [um]
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Structure Design: Height Modulation of 0.90

Far View Near View
Scenario Scenario

- uum *

scaling of modulation
o Electric Energy Density |1 V/ m) | %eight b; | o Electric Energy Density [1E V/ m) ]
g =0.90
Eo Eo
> >
| 0.000589 |
X [um] X [um]
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Structure Design: Find the Optimum Scaling Factor

« As a goal, the peak energy density
of the foci for both far view and
near view scenario shall be the
same.

« Therefore, the peak energy density
IS calculated with respect to the
height scaling factor for both
scenarios.

— Near View Scenario

— Far View Scenario |

Peak Energy Density [1ES (V/m)#2]

( N
Optimum of the scaling | I I I —
factor for equivalent peak 055 06 065 07 075 08 08 09 095
I 1 igh li
energy density for both foci Height Scaling Factor
(near and far view)

\_ J
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Structure Design: Optimum Height Modulation of 0.605

Far View Near View
Scenario Scenario

- uum *

scaling of modulation

o Electric Energy Density [1E5|(V/m)?] height by x Electric Energy Density [LE V/ m)
419 B = 0.605
_ 4 _ N _
Se Goal of equivalent Eo
maximum energy g
” density for both ”
. foci achieved! o
| \ % R
1.01E-06 0.000179
X [um] X [pm]
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lllustration of Focus Development from Near to Far Region

Near to Far View Scenario

l

Az =20m

|

Az = 100 mm

Focus spots with different object positions

Az = 100mm 250mm 500mm
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@HTTRANS N

Modeling of a Metalens Singlet Based on Half-Wave
Plate Model



Modeling Task

designed to function
AY(p) = kon (f Vilell® + f2) as a focusing lens

RN

input plane wave
normal incidence
wavelength @532nm
beam diameter 2mm
polarization state

a) R-circular

b) linear

c) L-circular

2mm

How to calculate the point
spread function (PSF) at the
focal plane of a nano-fin type
metalens, with polarization
effects considered?

A 4
M. Khorasaninejad et al.,
Science 352, 1190-1194 (2016).

N
~ 7

f=725um
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Simulation Results on Whole Detector Plane

metalens

N

Behavior of the metalens obviously depends
on the polarization states of the input fields.

r

\

u 6: R-Circular Polarized Input (Full Area)
Chromatic Fields Set

{

m [(V/m)*2]

Only desired
mode

0.26

X [mm]

R-circular polarization input

E@( Both desired l oo | ot e )

(=2 ]

nm- [(v/m)"2]

and conjugate
modes

X [mm]

linear polarization input

Only conjugate

[tv/m)*2]

D.26

modes

X [mm]

L-circular polarization input
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Focal Area Analysis

metalens

small detector size
for focal region

analysis

r

\

(=2 ]

n 5: R-Circular Polarized Input (Focall Area)
Chromatic Fields Set

(=& ]

n T: Linear Polarized Input (Focal Area)
Chromatic Fields Set

(=2 ]

n G: L-Circular Polarized Input (Focal Area)
Chromatic Fields Set

Data for Wavelength of 532 nm [1E7 (V/m)*2]

1.7

0.85

¥ [pum]

-0.5 o 0.5
X [um]

R-circular polarization input

Data for Wavelength of 332 nm [1E7 (V/m)*2]

1.7
L
Ll
E
=z ° 0.85
-—
L
2
_ _ o
0.5 ] 0.5
X [um]

linear polarization input

Data for Wavelength of 532 nm [1E7 (V/m)*2]

1.7
E
= 0.85
-
_ _ ]
0.5 1] 0.5
X [um]

L-circular polarization input
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Focal Area Analysis

metalens

r

\

=N [EoR ==

n 5t R-Circular Polarized Input (Focall Area)
Chromatic Fields Set

(=& ]

u T: Linear Polarized Input (Focal Area)
Chromatic Fields Set

(=2 ]

u G: L-Circular Polarized Input (Focal Area)
Chromatic Fields Set

Data for Wavelength of 532 nm [1E7 (V/m)*2]

1.7

0.5

Y [um]
0

0.5

" FWHM=355pum

0

-0.5 0 0.5
X [um]

R-circular polarization input

Data for Wavelength of 332 nm [1E7 (V/m)*2]

1.7
L
Ll
E
=z ° 0.85
-—
L
2
_ _ o
0.5 ] 0.5
X [um]

linear polarization input

Data for Wavelength of 532 nm [1E7 (V/m)*2]

1.7
L
fa]
E
= 0.85
-
L
=
_ _ ]
0.5 1] 0.5
X [um]

L-circular polarization input
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Peek into VirtualLab Fusion

polarization definition via pre-defined
or customized Jones vectors

Edit Plane Wave *
Basic Parameters Spectral Parameters Spatial Parameters
Polarization Mode Selection Sampling Ray Selection

(® Global Polarization Local Polarization
Polarization Input

Type of Polarization | Circulary Polarized ~
Linearly Polarized

e 5k Fuiaid

General Input via Jones Vector

MNomalized Jones Vector

!/,,\! ) l/ D_?D?“‘I‘I\I

\ i0.70711

Edit Metazurface HOE

Geometry /
Channels

Position /
Orientation

|

Saolid  Functional Operator | Meta Material Model

Operator Works on...
() Front Side (®) Back Side

Algorithms
Snippet for Wavefront Phase Response Validity: V]
Snippet for Gradient of \Wavefront Phase Response o~ Edit Walidity: (/]

user-defined desired
lens function via e.qg.
formula coding

Funct
=
—3 .2
:zl 5
=
e
Propag =
Chanrl
=
g
|
=
)]

@ Source Code Editor

Struetl Source Code  Global Parameters  Snippet Help  Advanced Settings

1 //calculate support variable v e
2 double tempDenominator = Math.Sgrt{(x*x) + (y*y) + (FocallLength*F | Fo.-
3 //define phase

4 double phaseAtPosition = 2.8 * Math.PI / Designbavelength * (Foca

5 //return phase value

¥ return phaseAtPosition;
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VirtualLab Fusion — Summer Release 2019

mm’lﬂi

Microstructure
Components Modeling

= Modeling of
microstructure
components beyond
paraxial situtation

= Combined use with
general input field

= Typical use for diffractive
diffuser system modeling

Diffractive Lens

= Complementary workflow
with Zemax OpticStudio

= Directimport of e.g.
Binary 2 surface

= Modeling based on real
diffractive lens surface
structures

= Export for fabrication

n29'?

Metalens

= Unified software platform
with both rigorus analysis
of nano structures, and
also whole lens modeling

= Rigorous Fourier modal
method (FMM) for
unit cell modeling
with friendly structure
configuration

Integral Method for
Grating Modeling

= |n-built model for
rectangular/slanted
gratings with rounded
edges

= Faster convergence than
other technigues

= Suitable for fabrication
tolerance analysis

Crating Components in
GCeneral Optical Setup

= Rigorous modeling based
on in-built Fourier modal
method (FMM/RCWA)

= Use together with other
components in general
optical setups

= Arbitrary orientation

Simulation Engine
Improvement

= Automatized sampling
algorithm for free-space
propagation

= Robust handling of aber-

rated wavefront phases

= Unified algorithm for
propagation between
tilted planes as well

....and more at our booth

Hall B1, 209
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