

Fast physical optics with VirtualLab Fusion optics software

Modeling and Design of Gratings, DOEs, Diffractive and Metalenses

Site Zhang¹, Roberto Knoth¹, Huiying Zhong², Christian Hellmann³, and Frank Wyrowski²

- ¹ LightTrans International UG
- ² Applied Computational Optics Group, Friedrich Schiller University Jena
- ³ Wyrowski Photonics GmbH

Jena, Germany

University of Jena

Wyrowski Photonics

Optical Design Software and Services

Physical-Optics System Modeling by Connecting Field Solvers

Physical-Optics System Modeling: Regional Field Solvers

Physical-Optics System Modeling by Connecting Field Solvers

VirtualLab Fusion is a unified software platform incorporating various field solvers

- Modeling of microstructure components beyond paraxial situtation
- Combined use with general input field
- Typical use for diffractive diffuser system modeling

Diffractive Lens

- Complementary workflow with Zemax OpticStudio
- Direct import of e.g.
 Binary 2 surface
- Modeling based on real diffractive lens surface structures
- Export for fabrication

Metalens

- Unified software platform with both rigorus analysis of nano structures, and also whole lens modeling
- Rigorous Fourier modal method (FMM) for unit cell modeling with friendly structure configuration

Integral Method for Grating Modeling

- In-built model for rectangular/slanted gratings with rounded edges
- Faster convergence than other techniques
- Suitable for fabrication tolerance analysis

Grating Components in General Optical Setup

- Rigorous modeling based on in-built Fourier modal method (FMM/RCWA)
- Use together with other components in general optical setups
- Arbitrary orientation

Simulation Engine Improvement

- Automatized sampling algorithm for free-space propagation
- Robust handling of aberrated wavefront phases
- Unified algorithm for propagation between tilted planes as well

... and more at our booth

Parametric Optimization and Tolerance Analysis of Slanted Gratings

Modeling Task

Parametric Optimization for 1st Order

The fabricated slanted gratings often shows a deviation from the perfect parallel grating lines. Such slope deviations should be taken into account for the tolerance analysis.

fixed average slant angle

 $\varphi = (\varphi_1 + \varphi_2)/2 = 34^\circ$

- fixed filling factor (average) c/d=57%
- varying φ_1 from 34 to 44°

Rigorous simulation with Fourier modal method (FMM), for tolerance analysis over 50 steps, takes 30 seconds.

The fabricated slanted gratings often shows a deviation from the perfect parallel grating lines. The rounded edges should be taken into account for the tolerance analysis.

- fixed average slant angle $\varphi = 34^{\circ}$
 - $\psi = 54$
- fixed filling factor c/d=57%
- varying r from 15nm 70nm

Rigorous simulation with **Integral Method** (IM), for tolerance analysis over 30 steps, takes 9 seconds.

Rigorous Analysis of Nanopillar Metasurface Building Block

Modeling Task

Nanopillar Analysis vs. Pillar Diameter

nanopillar #1

nanopillar #2

nanopillar #3

Nanopillars No.	#1 (405nm)	#2 (532nm)	#3 (660nm)
U	180nm	250nm	350 nm
Н	400nm	600nm	600nm
D (variable)	80-155nm	100-220nm	100-320nm

Nanopillar Analysis vs. Pillar Diameter

- The phase modulation covers 2π range, and it changes almost linearly with pillar diameter, which enables convenient phase control.
- The transmission efficiency remains above 90% for varying pillar diameter over the design range.

Nanopillars No.	#1 (405nm)	#2 (532nm)	#3 (660nm)
U	180nm	250nm	350 nm
Н	400nm	600nm	600nm
D (variable)	80-155nm	100-220nm	100-320nm

🛃 35: Analysis of Nanopillar @532nm - • × Numerical Data Array Diagram Table Value at x-Coordinate 8 Efficiency [%] 09 Phase [rad] 4 20 Efficiency Ň Phase 5 10 15 20 25 30 Iteration Step

nanopillar #2

Peek into VirtualLab Fusion

flexible pillar structure definition

Edit Stack			×	
			×_d Base Block	
Index z-Distance z-Position	Interface	Subsequent Medium	Com	
▶ 1 0 mm 0 mm P	Plane Interface	Non-Dispersive Materi	Enter your commen	
Source Co Source Co I I I I I I I I I I I I I I I I I I I	ode Editor de Global Parameters double heig // convert double rho if(rho <= 0 { height } return heig	Snippet Help Advanced 3 (ht = 0.0; to radial distan = Math.Sqrt(x * 0.5 * Diameter) = Height; (ht; customized via prog	Settings ce x + y * y); structure gramming	- C × ApertureDiameterX [double] ApertureDiameterY [double] x [double] Diameter [double] Height [double]

Design of Diffractive Beam Splitters for Generating a 2D Light Mark

Design Task

Design Task

Results

• Designed binary-phase for beam splitter

Beginning with different random phase distributions on the target plane, the iterative Fourier transform algorithm (IFTA) calculates different possible design results.

Results

• Performance evaluation

Fast physical-optics simulation of the complete optical system gives access to multiple merit functions at once.

Merit functions	Design #1	Design #2	Design #3	
conversion efficiency	65.92%	66.38%	64.71%	
uniformity error	4.31%	3.69%	6.76%	
stray light	3.99%	5.17%	3.11%	

Diffraction Pattern Calculation from a Reflection-Type Diffractive Beam Splitter

Modeling Task

Diffracted Pattern in Detector Plane

The beam splitter is designed under normal incidence, and for small angle (< 10°) it delivers uniformly split diffraction orders.

The efficiency of zeroth order exceeds other orders, when θ increases to 15°. Such situation shall be avoided in practice.

Peek into VirtualLab Fusion

Design and Rigorous Analysis of Non-Paraxial Diffractive Beam Splitter

Design Task

Results

• Phase-only transmission design [with iterative Fourier transform algorithm (IFTA)]

With differently random phase distributions as starting points, IFTA calculates different possible design results. 3 designs are selected out of 100 according to customized criteria.

Results

• Structure design [with thin-element approximation (TEA)]

Automatic conversion from phase-only transmission to structure height profile, according to given wavelength and material.

• Performance evaluation with TEA

Design #2 seems to give the best uniformity, based on the evaluation results from thinelement approximation. But, is it still true for the non-paraxial situation?

Performance evaluation with Fourier modal method

With the rigorous Fourier modal method (FMM), it turns out that design #2 produces strong zeroth diffraction order, resulting in very poor uniformity in fact.

Results

Results

• Further optimization – zeroth order tuning

Working Principle Demonstration of the Dot Projector with Physical Optics Modeling

Modeling Task

Source Modeling

Simulation with the On-axis VCSEL

pattern of the orders is obtained on

detector plane

LightTrans International UG

0

X [m]

-0.2

0.2

Simulation with an Off-axis VCSEL

- For off-axis VCSEL, the lens collimates the input beam with an angle regarding to the mode's position
- The irradiance pattern is shifted from the on-axis case, with respect to the collimated angle of the beam.

0

X [m]

0.2

-0.2

Simulation with All Modes of the VCSEL Array

Design and Analysis of Intraocular Diffractive Lens

Design Task for a Diffractive Lens

Each configuration of the two intraocular lens requires a certain wavefront surface response function.

$$\Delta \psi(\rho) = m \Delta \psi(\rho)$$

Where m = 0 for the far view scenario and m = 1 for the near view scenario

How to design a diffractive lens to achieve different wavefront effects for the two configurations?

Import of Optical System from OpticStudio

The configuration of the optical setup as well as the design of the wavefront surface response by a Binary-2 surface was generated in OpticSudio.

VirtualLab Fusion provides the capability to import the optical setups and merge them in a single optical setup configuration.

Far View: Conformity of OpticStudio Import

Near View: Conformity of OpticStudio Import

Structure Design: Diffractive Lens Profile Height

 The structure profile of the diffractive lens is calculated by Thin Element Approximation (TEA) according to the wavefront surface response:

$$h^{\rm DOE}(\rho) = \beta \frac{\lambda}{2\pi\Delta n} \Delta \psi(\rho)^{\rm DOE}$$

with a scaling factor β to modulate the height and control the efficiency of the diffraction orders TEA provides directly a very high efficiency for the 1st order

Structure Design: Diffractive Lens Profile Height

- A quantization of the structure with 2 height levels is chosen because the binary diffractive lens
 - is beneficial for manufacturing (cost, easier to fabricate)
 - gives a better control of the efficiencies especially for the 0th and 1st order using the height modulation approach

Structure Design: Height Modulation of 1.00

Structure Design: Height Modulation of 0.95

Structure Design: Height Modulation of 0.90

Structure Design: Find the Optimum Scaling Factor

- As a goal, the peak energy density of the foci for both far view and near view scenario shall be the same.
- Therefore, the peak energy density is calculated with respect to the height scaling factor for both scenarios.

Optimum of the scaling factor for equivalent peak energy density for both foci (near and far view)

Structure Design: Optimum Height Modulation of 0.605

Illustration of Focus Development from Near to Far Region

Modeling of a Metalens Singlet Based on Half-Wave Plate Model

Modeling Task

Simulation Results on Whole Detector Plane

Focal Area Analysis

Focal Area Analysis

Peek into VirtualLab Fusion

polarization definition via pre-defined or customized Jones vectors

	Spee	stral Parame	eters	Spatial F	Parameters
Polarization	Mode Selec	tion	Sampling	Ra	y Selection
Global Polariza	tion	OL	ocal Polari:	zation	
Polarization Input					
Type of Polariz	ation Circu	larlv Polariz	ed	~	
	Linea	rly Polarize	d		
Direction of Rot	tation Circu	arly Polariz	ed		
	Gene	ral Input vi	a Jones Veo	tor	
Normalized Jones \	Vector				
Normalized Jones	Vector				`
Normalized Jones	Vector			0.70711)
Normalized Jones V $\begin{pmatrix} J_X \\ J_Y \end{pmatrix} =$	(0.70711 i0.70711)
Normalized Jones V $\begin{pmatrix} Jx \\ Jy \end{pmatrix} =$	(0.70711 i0.70711)

- Modeling of microstructure components beyond paraxial situtation
- Combined use with general input field
- Typical use for diffractive diffuser system modeling

Diffractive Lens

- Complementary workflow with Zemax OpticStudio
- Direct import of e.g.
 Binary 2 surface
- Modeling based on real diffractive lens surface structures
- Export for fabrication

Metalens

- Unified software platform with both rigorus analysis of nano structures, and also whole lens modeling
- Rigorous Fourier modal method (FMM) for unit cell modeling with friendly structure configuration

Integral Method for Grating Modeling

- In-built model for rectangular/slanted gratings with rounded edges
- Faster convergence than other techniques
- Suitable for fabrication tolerance analysis

Grating Components in General Optical Setup

- Rigorous modeling based on in-built Fourier modal method (FMM/RCWA)
- Use together with other components in general optical setups
- Arbitrary orientation

Simulation Engine Improvement

- Automatized sampling algorithm for free-space propagation
- Robust handling of aberrated wavefront phases
- Unified algorithm for propagation between tilted planes as well

... and more at our booth

Hall B1, 209