Friedrich-Schiller-Universität Jena

Fast Physical-Optics Modeling of Two-Photon Fluorescence Microscopy with 3D Structured Illumination

Rui Shi^{1,2}, Site Zhang², Christian Hellmann³, and Frank Wyrowski¹ 1 Applied Computational Optics Group, Friedrich Schiller University Jena, Jena, Germany, 2 LightTrans International UG, Jena, Germany, 3 Wyrowski Photonics GmbH, Jena, Germany,

Background: Fluorescence Microscopy

Motivation: Higher Resolution & Reducing Out-Of-Focus Light

Motivation: Higher Resolution & Reducing Out-Of-Focus Light

TF-TPF combined with 3D-SIM

[Isobe et al., Jap. J. Appl. Phy. (2017)]

- The interference pattern and the temporal focusing is calculated assuming an ideal system in literature.
- Is this assumption true? What is the influence from a real system?
- Ray tracing is not enough.
- Physical-optics modeling is required to include coherence, interference and diffraction from microstructure.

Definition of Quantities

 Interference pattern is the intensity which is defined as proportional to the time averaged energy density:

$$I = \langle I(t) \rangle = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} I(t)dt$$
$$\propto \frac{1}{\Delta t} \int_{t}^{t+\Delta t} ||\mathbf{E}(t)||^2 dt$$

• Inhomogeneity:

$$\sigma = \frac{I_{\rm up}^{\rm max} - I_{\rm up}^{\rm min}}{I_{\rm up}^{\rm max} + I_{\rm up}^{\rm min}}$$

Modeling Tasks:

Fully Vectorial Modeling in the Framework of Field Tracing

Fully Vectorial Modeling in the Framework of Field Tracing

Modeling of the temporal focusing follows the same logic.

Free space propagation

Fourier Modal Method (FMM)

Local Plane Interface Approximation (LPIA)

Validation of LPIA

Simulation Results via VirtualLab Fusion

Interference Pattern Near Focal Plane

ideal system

Interference Pattern Near Focal Plane

Interference Pattern Near Focal Plane

Temporal Distribution Near Focal Plane at Center Point

ideal system

 $|E_y(z,t)| \qquad I$

Temporal Distribution Near Focal Plane at Center Point

Computational time is within half a minute.

Temporal Distribution Near Focal Plane at Center Point

Summary, Conclusion and Outlook

- We use the fully vectorial physical-optics modeling of the whole microscopy system with inclusion of the microstructure, e.g. blazed grating.
- The coherence, interference and aberration effects are directly included with a relatively fast modeling speed.
- For perfectly alignment, the lens is well-designed.
- For lateral shift of the objective lens, the inhomogeneity increases for interference pattern. The temporal focusing becomes even wider with excitation of more out-of-focus light.
- The combination of the interference pattern and temporal effects will be investigated in the future.

