

Laser – World of Photonics 2019, München

Physical-Optical Analysis of Lightguide Coupling Setup and Systematic Design Strategy

Roberto Knoth¹, Stefan Steiner¹, Site Zhang¹, Christian Hellmann³, and Frank Wyrowski²

- ¹ LightTrans International UG, Jena, Germany
- ²Applied Computational Optics Group, Friedrich-Schiller-Universität Jena, Germany
- ³ Wyrowski Photonics GmbH, Jena, Germany

• Uniformity of radiance/illuminance per pupil position dependent of FOV angles.

Lightguide Coupling Approach

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Workflow:

- 1. Determination of the grating vector (period and orientation) to fulfill the guiding condition of lightguides
- 2. Designing the structure profile of the incouple grating by an optimization approach

Lightguide Coupling Approach

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Workflow:

- 1. Determination of the grating vector (period and orientation) to fulfill the guiding condition of lightguides
- 2. Designing the structure profile of the incouple grating by an optimization approach

Consideration of the k-Domain

A grating is an elegant component for the coupling because the FOV is shifted in the k-domain under consideration of the grating vector G.

 $k_0 n^{\lg} \ge \left| \boldsymbol{\kappa}^{\operatorname{in}} + \boldsymbol{m} \, \boldsymbol{G} \right| \ge k_0 n^{\operatorname{air}}$

In general, the 2D-periodic grating vector has two components

 $oldsymbol{G} = (rac{2\pi}{p_x}, rac{2\pi}{p_y})^T$

with period along the x- and y-axis (p_x, p_y) and the diffraction order $\boldsymbol{m} = (m_x, m_y)^T$.

Optimization Task: Binary Coupling Grating

Workflow:

- 1. Determination of the grating vector (period and orientation) to fulfill the guiding condition of lightguides
- 2. Designing the structure profile of the incouple grating by an optimization approach

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Optimization Workflow

- the following optimization workflow is applied to design a certain grating for a specific lightguide coupling:
 - 1. Define the inputs and their ranges, start with a reference input combination
 - 2. Perform the optimization with several simulations
 - 3. Calculate the corresponding outputs
 - 4. Evaluation of the defined objectives
 - 5. Next iteration with new inputs
- the optimization algorithm stops after certain iterations and/ or when no more improvement of the objectives can be achieved

Simulation Results and Configuration of the Merit Function

Inputs

- variation of the fill factor c/p with the
 slit width c and the period p

 0.1% to 99.9%
- variation of the modulation depth h
 50nm to 1500nm

Initial Configuration of Grating	
fill factor	50.00%
modulation depth	400.00nm
period	410nm
operating order	1 st transmitted

Optimization Results of optiSLang

- the optimization results are plotted as a function of the merit functions
 - mean efficiency
 - uniformity contrast
- the Pareto front indicates the optimum compromise between the two merit functions (highlighted)
- any optimization result at the pareto front might selected depending on the needs of the optical designer

Advanced Evaluation of the Optimization Results

- as a result, a design is selected, which is the best compromise for a prioritized low uniformity contrast and an acceptable mean efficiency including manufacturable grating parameters
- the Parallel Coordinates Plot illustrates the corresponding input parameter combination for this design (black curve)

Analysis of Coupling Efficiency for Optimization Result

- finally, the optimization result is analyzed regarding the coupling efficiency using the software VirtualLab Fusion
- as a result, the uniformity contrast was significantly reduced but to the cost of the entire efficiency

Optimization Task: Slanted Coupling Grating

set of plane waves

- field of view (-30..30, -15..15)°
- wavelength 532nm
- linearly polarized along x-axis

Optimization Result of optiSLang

 the additional freedom of the slant angle provides additional solutions

Analysis of Coupling Efficiency for Optimization Results

www.LightTrans.com

Optimization Task: Characteristic Curve Design

- practically, the incouple grating can be used to compensate the non-uniformity of the FOV map within the lightguide
- therefore, a strategy is shown how to achieve a desired FOV map by a parametric optimization approach of the incouple grating

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Incoupling Grating Design: Pre-Compensate FOV Map

Compensation of Non-Uniformity by the Incoupling Grating

Calculated Angular Efficiency at Eye-Box

Assumed Desired Angular Efficiency at Incouple Region

 as an example, the desired FOV map at the incouple region <u>is assumed</u> to be simply the inverted FOV map at the eye-box

One-dimensional Investigation of the FOV Map

- for this example, a one-dimensional design approach of the FOV map was chosen
- hence, the angular efficiency along the grating period was used for analysis and optimization

Characteristic Curve [%]

Definition of the Merit Function for the FOV Map Design

- two parameters are used to evaluate the match of the FOV map to the desired one
 - scaling factor
 - sum of deviation per FOV angle

Investigation of the Grating for Angular Efficiency Design

Deviation

Parameter Scan

- variation of the fill factor c/p with the slit width c and the period p
 - > 20% to 80%
- variation of the modulation depth h
 500nm to 1000nm

8

20

60

50

40

30

20

0.5

0.6

0.7

Modulation Depth [µm]

0.8

0.9

Fill Factor [%]

- first, a parameter scan is performed to determine an initial setup for a local optimization method
- in addition, an appropriate range of the parameters for the further optimization can be found

Result of the Parameter Scan

Configuration of Grating found by Parameter Scan		
fill factor	56.00%	
modulation depth	550nm	

- as a result, a grating configuration with a minimum deviation and a scaling factor near to one is selected
- the configuration already fits quite well to the desired characteristic curve

Downhill Simplex Optimization for Characteristic Curve Design

Local Optimization in Selection

variation of the **fill factor** c/p with the slit width c and the period p

> 47% to 62%

variation of the modulation depth h
 500 nm to 650 nm

as a second step, a local optimization is performed to find the best configuration for the desired characteristic curve

Result of Optimization

2D Analysis of the FOV map

Desired Characteristic Efficiency Distribution at Incoupling Region

Achieved Characteristic Efficiency Distribution at Incoupling Region

- finally, the FOV map is analyzed two-dimensionally
- it is obvious, that the design strategy for 1D FOV map does not lead to perfect results in 2D case

Compensation of Residual Angular Efficiencies by Light Engine

• the residual FOV map might be compensated by the dynamic characteristics of the light engine

Residual Angular Efficiency at Incouple Region after Optimization [%]

Outlook

outcoupling &

y-expansion

x-expansion

- the required angular efficiency at the ٠ incouple region is strongly dependent on the EPE and outcouple gratings
- hence, the incouple grating design is an ٠ iterative design process triggered by the systematic design approach of the lightguide

Thank you for your attention!

Visit us at our booth 209 in Hall B1!