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Physical-Optics System Modeling by Connecting Field Solvers
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Physical-Optics System Modeling: Regional Field Solvers
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Physical-Optics System Modeling by Connecting Field Solvers
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Connection of solvers via |/O
channel concept which enables
non-sequential physical-optics

system modeling
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Surface Channels: Example of Plate/Etalon
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Surface Channels: Example of Plate/Etalon
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Surface Channels: Example of Plate/Etalon
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Surface Channels: Example of Plate/Etalon

planar-planar (parallel)
- varying thickness from 100 to 99 um
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Surface Channels: Example of Plate/Etalon

planar-planar (parallel)
- varying thickness from 100 to 99 um
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Surface Channels: Example of Plate

planar-planar (non-parallel)
- center thickness 100 um
- tilt of first surface
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Surface Channels: Example of Plate

cylindrical-planar
- center thickness 100 um
- cylindrical surface radius 1m
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Surface Channels: Example of Plate

planar-spherical
- center thickness 100 um
- spherical surface radius -1m
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Physical-Optics System Modeling by Connecting Field Solvers

Grating
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Connection of solvers via |/O
channel concept which enables
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Lightguide Concept




Lightguide Concept: Fundamental Detectors

Eyebox}

« Radiance/illuminance (per pupil area) in
eyebox

« PSF/MTF over eye position in eyebox

* Photometry, radiometry, image
resolution, color, ... field tracing provides
high flexibility to apply customized
detector functions




Lightguide Concept: Modeling Task

Connecting field solvers M
/’“\\ //“\\ /’”\\ /4
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Evaluate e.g. radiance, illuminance,
PSF/MTF including

* Rigorous modeling of gratings

» Polarization

* Interference

« Coherence




Typical Modeling Situation for AR&MR Lightguide
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Tolerance Analysis by Integral Method

The fabricated slanted gratings often shows &= 4: Tolerance Analysis - )
g . Numerical Data Array
gdewahon from the perfect parallel grating — e
lines. The rounded edges should be taken =
into account for the tolerance analysis. e
z _ | over 85%
- ﬁxed average Slant angle : EI[} 3|5 BIG 3I5 4'0 d.IE- Sl{} 5'5 GID 6l5
P = 347 ded ed
- fixed filling factor rounded edge r [nmj
c/d=57% : : —
- varying rfrom 15nm 70nm Rigorous simulation with Integral Method (IM), for

tolerance analysis over 30 steps, takes 9 seconds.

h=324nm
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Tolerance Analysis by Integral Method

-~

 Integral Method (IM)

Two rigorous grating modeling techniques
available in VirtualLab Fusion:
* Fourier Modal Method (FMM)

J

fixed average slant angle
@ = 34°

fixed filling factor
c/d=57%

varying r from 15nm 70nm
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Rigorous simulation with Integral Method (IM), for
tolerance analysis over 30 steps, takes 9 seconds.
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Typical Modeling Situation for AR&MR Lightguide
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Coherence effects



Correlation between Modes in Modeling

 FOV mode (one image pixel) represents
electromagnetic field which consists of
— Fully coherent modes per wavelength: spectral modes

— Stationary sources: Spectral modes are mutually
uncorrelated

— Degree of polarization: Representation by two uncorrelated
modes per spectral mode
« Each spectral mode propagates through lightguide
and is split numerous times:
— Channel modes (beams in eyebox)
— Channel modes per spectral mode are mutually correlated!




Lightguide Modeling and Design
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Lightguide Modeling and Design
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_lightguide modeling
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Correlation between Modes in Modeling
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Y

ATTTTTIIIA

s,
4

Outcoupling
Eyebox

2D Expansion

© 0 0 © « +
® 0 0 © «
© 0 60 0 «

UNIVERSITY OF JOENSUU
DEPARTMENT oF PHYSICS

DISSERTATIONS 47

DIFFRACTIVE OPTICS

FOR VIRTUAL REALITY DISPLAYS

Tapani Level,

ACADEMIC DISSERTATION

To be presented w
Joensuu, for publ

ith permission of the Facuity of Science of the University of
7, Joensuu, on Se

ic criticism in Auditorium B of the University, Yliopistokaty
ptember |6th, 2005, at 12 noon,

JOENSUU 2005




Levola Type Geometry of Eye Pupil Expansion (EPE)

Multiple Mini-Mach-Zehnder Systems
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Mini Mach-Zehnder Inferferometer Lightpaths: Channel Modes




Lightguide Setup & Evaluation of Outcoupled Light
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Outcoupled Light Modes Passing Through Eye Pupil
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4 -2 0 2 4 -5 -1 05 0 O0p 1 1.5
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of outcouling grating region

due to beams hitting the edge of
any grating region, the further each of these beam footprints

propagation varies for the different derives from multiple light modes
light portions; this causes these from different light paths
segmented beam footprints




Outcoupled Light Modes Passing Through Eye Pupil

Boundary effects h

should be included in
high resolution )
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Outcoupled Light Modes Passing Through Eye Pupil

Boundary effects h

should be included in
high resolution )
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Outcoupled Light Modes Passing Through Eye Pupil
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light passing the eye pupil

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Outcoupled Light Modes Passing Through Eye Pupil

532nm (Coherent Sum) [1E-3 (V/m)~2]
9.89

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Outcoupled Light Modes Passing Through Eye Pupil

532nm (Incoherent Sum) [1E-2 (V/m)A2] \

Assumption of
uncorrelated modes
leads to wrong result!

X [mm]

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Light Modes Passing Through Eye Pupil: Single Spectral Mode

532nm (Coherent Sum) [1E-3 (V/m)~2]
9.89

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Light Modes Passing Through Eye Pupil: 1nm Bandwidth

532nm (Coherent Sum) [1E-3 (V/m)~2] 532nm (Part.Coh.Sum ~600fs) [1E-3 (V/m)"2] 532nm (Incoherent Sum) [1E-2 (V/m)/"2]
9.89

[ Coherent J [Partially Coherent} [ Incoherent J

Pupil is partly filled with mutually correlated channel
modes per uncorrelated spectral modes.




Light Modes Passing Through Eye Pupil

...of a ...of a ...of an
laser diode (~1nm) VCSEL (~20nm) LED (~40nm)

Pupil is partly filled with mutually correlated channel
modes per uncorrelated spectral modes.
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Folarization effectc




Light Modes Passing Through Eye Pupil
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Energy conservation per spectral mode

Ultimate test: Evaluation of overall flux through all surfaces
of waveguide must provide efficiency close to 100%



Modeling Task:

In- and Outcoupling

Edit Waveguide
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Result by 3D Ray Tracing (Working Orders)

Ray tracing illustration
of desired lightpath.
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Result by 3D Ray Tracing (All Orders)

Ray tracing illustration
iIncluding all lightpaths
caused by higher
grating orders.

~
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Rigorous Overall Efficiency Evaluation

* Physical-optics analysis of all lightpaths.
« Combination including polarization and coherence!

Detector . Calculated Efficiency .
Transmission @ Incoupling 0.416%
Reflection @ Incoupling 11.997%
Side Wall #1 1.194%
Side Wall #2 6.778%
Reflection @ Outcoupling 77.983%
Transmission @ Outcoupling 1.546%
Total 99.915%




Tabelle1

		Detector		Calculated Efficiency

		Transmission @ Incoupling		0.416%

		Reflection @ Incoupling		11.997%

		Side Wall #1		1.194%

		Side Wall #2		6.778%

		Reflection @ Outcoupling		77.983%

		Transmission @ Outcoupling		1.546%

		Total		99.915%






Polarization effects



Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation
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Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation

Incident light at grating interaction
(uniform polarization)
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Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation
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igh for FOV Angle (5°, 3°) — Polarization Evaluation
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Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation

Incident light at grating interaction

(non-uniform polarization)
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Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation
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PSF and MTF evaluation



Light Modes Passing Through Eye Pupil

...of a ...of a ...of an
laser diode (~1nm) VCSEL (~20nm) LED (~40nm)

Pupil is partly filled with mutually correlated channel
modes per uncorrelated spectral modes.

-/




Results: Full Pupil lllumination
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behind eye pupil

Ideal Eye Model
- pupil diameter = 4mm
- ideal lens with focal length = 17mm




Results: Full Pupil lllumination

PSF @ retina
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Results: FoV = (0°; 0°), Monochromatic 532nm
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Results: FoV = (0°; 0°), Monochromatic 532nm
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Results: FoV = (0°; 0°), Spectrum 1nm Bandwidth (24samples)
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Results: FoV = (0°; 0°), Spectrum 10nm Bandwidth (100samples)
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Light Modes Passing Through Eye Pupil

...ofa ...ofa ...of an
laser diode (~1nm) VCSEL (~20nm) LED (~40nm)

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




lllustration of PSF vs. Filling of Eye Pupil



Pupil vs. PSF (Fourier Transform)
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Pupil vs. PSF (

Fourier Transform)

l 57: Eye Pupil
Light View Data View

25477 mm

3 mm

o
n
n

o

-2.5523 mm

Globally Polarized Hammonic Amplitude

2.5477 mm

Zoom: 0.22232

e

o

(1102: 1102)

- 23: Fourier Transform (Physical) (22:)
Light View Data View

=

- 55: Inverse Fourier Transform (Physical) (15:)

Light View Data View

255 mm

N

25519 mm

-2.5519 mm

Globally Polarized Hamoni Amplitude

N\
4

e

o

2.55 mm

Zoom: 0.099419 (2756; 2756)

N A
E
o
o
£
=
£
5
Ir
1
-58317 1/m 57462 1/m -
< >
Angular Spectrum of Harmoni Amplitude ~ Zoom: 3.2668 (1102; 1102)
- 15: Fourier Transform (Physical) (14:) (=N o] @

Light View Data View

"
x
Q
=
-
£
=
=
e

1
-53630 1/m 51719 1/m 5
< >

Angular Spectrum of Hamoni Amplitude  Zoom: 3.5889 (2756; 2756)




Pupil vs. PSF (Fourier Transform)
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Pupil vs. PSF (Fourier Transform)
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Conclusion

« Connecting field solvers enables practical and fast
physical-optics modeling of lightguides for AR&VR.

* VirtualLab Fusion provides all demanded modeling
techniques on one single platform
— Ray tracing
— Physical-optics modeling

* Dependent on the lightguide architecture and the light
engine, coherence and polarization effects can be
important and are fully included in modeling.

Steady R&D in lightguide modeling and
design.
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