

Digital Optical Technologies II, Munich, June 25, 2019

Physical-optics analysis of lightguides for augmented and mixed reality glasses

C. Hellmann***, S. Steiner**, R. Knoth**, S. Zhang**, F. Wyrowski* *University of Jena, ** LightTrans GmbH. ***Wyrowski Photonics

Applied Computational Optics Group

Applied Computational Optics Group and LightTrans

Connecting Optical Technologies

Physical-Optics System Modeling by Connecting Field Solvers

Physical-Optics System Modeling: Regional Field Solvers

Physical-Optics System Modeling by Connecting Field Solvers

Connection of solvers via I/O channel concept which enables non-sequential physical-optics system modeling

Setting A

Setting A

Surface	+/+	+/-	-/-	-/+
1st	×			
2nd	×			

Setting B

Surface	+/+	+/-	-/-	-/+
1st	×	×		
2nd	×			

Setting C

Surface	+/+	+ /-	-/-	-/+	
1st	×		×		
2nd		×			

Setting D

Surface	+/+	+/-	-/-	-/+
1st	×	×	×	×
2nd	×	×	×	×

planar-planar (parallel)

- varying thickness from 100 to 99µm

Sunace	• / •	•/-	-/-	-/ •
1st	×	×	×	×
2nd	×	×	×	×

planar-planar (parallel)

- varying thickness from 100 to 99µm

Constructive and destructive interference alternatively shows up when the thickness of plate varies.

planar-planar (non-parallel)

- center thickness 100 µm
- tilt of first surface

cylindrical-planar

- center thickness $100\,\mu m$
- cylindrical surface radius 1 m

planar-spherical

- center thickness 100 µm
- spherical surface radius -1 m

Non-sequential simulation time of etalon with curved surfaces: few seconds and less

Physical-Optics System Modeling by Connecting Field Solvers

Lightguide Concept

Lightguide Concept: Fundamental Detectors

Lightguide Concept: Modeling Task

Evaluate e.g. radiance, illuminance, PSF/MTF including

- Rigorous modeling of gratings
- Polarization
- Interference
- Coherence

Typical Modeling Situation for AR&MR Lightguide

The fabricated slanted gratings often shows a deviation from the perfect parallel grating lines. The rounded edges should be taken into account for the tolerance analysis.

- fixed average slant angle

 $\varphi = 34^{\circ}$

- fixed filling factor c/d=57%
- varying *r* from 15nm 70nm

Rigorous simulation with Integral Method (IM), for tolerance analysis over 30 steps, takes 9 seconds.

Tolerance Analysis by Integral Method

Two rigorous grating modeling techniques available in VirtualLab Fusion:

• Fourier Modal Method (FMM)

Integral Method (IM)

- fixed average slant angle
 - $\varphi = 34^{\circ}$
- fixed filling factor c/d=57%
- varying *r* from 15nm 70nm

Rigorous simulation with Integral Method (IM), for tolerance analysis over 30 steps, takes 9 seconds.

Typical Modeling Situation for AR&MR Lightguide

Coherence effects

Correlation between Modes in Modeling

- FOV mode (one image pixel) represents electromagnetic field which consists of
 - Fully coherent modes per wavelength: spectral modes
 - Stationary sources: Spectral modes are mutually uncorrelated
 - Degree of polarization: Representation by two uncorrelated modes per spectral mode
- Each spectral mode propagates through lightguide and is split numerous times:
 - Channel modes (beams in eyebox)
 - Channel modes per spectral mode are mutually correlated!

Lightguide Modeling and Design

Lightguide Modeling and Design

*Corresponding author: jani.tervo@joensuu.fi

Correlation between Modes in Modeling

Levola Type Geometry of Eye Pupil Expansion (EPE)

Levola Type Geometry of Eye Pupil Expansion (EPE)

Mini Mach-Zehnder Inferferometer Lightpaths: Channel Modes

Lightguide Setup & Evaluation of Outcoupled Light

light passing the eye pupil

light passing the eye pupil

light passing the eye pupil

For one wavelength and one FOV the pupil is partly filled with mutually correlated channel modes.

For one wavelength and one FOV the pupil is partly filled with mutually correlated channel modes.

For one wavelength and one FOV the pupil is partly filled with mutually correlated channel modes.

Light Modes Passing Through Eye Pupil: Single Spectral Mode

For one wavelength and one FOV the pupil is partly filled with mutually correlated channel modes.

Light Modes Passing Through Eye Pupil: 1nm Bandwidth

Pupil is partly filled with mutually correlated channel modes per uncorrelated spectral modes.

Light Modes Passing Through Eye Pupil

Pupil is partly filled with mutually correlated channel modes per uncorrelated spectral modes.

Polarization effect

Light Modes Passing Through Eye Pupil

Energy conservation per spectral mode

Ultimate test: Evaluation of overall flux through all surfaces of waveguide must provide efficiency close to 100%

Modeling Task: In- and Outcoupling

Result by 3D Ray Tracing (Working Orders)

Result by 3D Ray Tracing (All Orders)

Rigorous Overall Efficiency Evaluation

- Physical-optics analysis of all lightpaths.
- Combination including polarization and coherence!

Detector	Calculated Efficiency
Transmission @ Incoupling	0.416%
Reflection @ Incoupling	11.997%
Side Wall #1	1.194%
Side Wall #2	6.778%
Reflection @ Outcoupling	77.983%
Transmission @ Outcoupling	1.546%
Total	99.915%

PSF and MTF evaluation

Polarization effects

PSF and MTF evaluation

Light Modes Passing Through Eye Pupil

Pupil is partly filled with mutually correlated channel modes per uncorrelated spectral modes.

Results: Full Pupil Illumination

Ideal Eye Model

- pupil diameter = 4 mm
- ideal lens with focal length = 17 mm

Results: Full Pupil Illumination

Ideal Eye Model

- pupil diameter = 4 mm
- ideal lens with focal length = 17 mm

Results: FoV = (0°; 0°), Monochromatic 532nm

Results: FoV = (0°; 0°), Monochromatic 532nm

Results: FoV = (0°; 0°), **Spectrum 1nm Bandwidth (24samples)**

Results: FoV = (0°; 0°), **Spectrum 10nm Bandwidth (100samples)**

Light Modes Passing Through Eye Pupil

For one wavelength and one FOV the pupil is partly filled with mutually correlated channel modes.

 Connecting field solvers enables practical and fast physical-optics modeling of tightguides for ARX/R. Virtual.LB Fluide provides all demanded modeling techniques on one single pattorm - Por years - Por years - Por provide provides - Dependent on the lightguide architecture and the light engine: coherene and pointration effect can be important and are fully included in modeling.

teady R&D in lightguide modeling an esign.

Illustration of PSF vs. Filling of Eye Pupil

Beam

Conclusion

- Connecting field solvers enables practical and fast physical-optics modeling of lightguides for AR&VR.
- VirtualLab Fusion provides all demanded modeling techniques on one single platform
 - Ray tracing
 - Physical-optics modeling
- Dependent on the lightguide architecture and the light engine, coherence and polarization effects can be important and are fully included in modeling.

Steady R&D in lightguide modeling and design.

Thank You!