

DGaO 2019, Darmstadt, June 13, 2019

Physical-Optics Analysis of Optical Interferometers

S. Zhang*, H. Zhong**, Rui Shi**, C. Hellmann*, F. Wyrowski** *University of Jena, ** LightTrans GmbH

Applied Computational Optics Group

Applied Computational Optics Group and LightTrans

Connecting Optical Technologies

Physical-Optics System Modeling by Connecting Field Solvers

Physical-Optics System Modeling: Regional Field Solvers

Physical-Optics System Modeling by Connecting Field Solvers

Connection of solvers via I/O channel concept which enables non-sequential physical-optics system modeling

Setting A

2nd

X

Setting A

Setting A

2nd

X

Setting A

Surface	+/+	+/-	-/-	-/+
1st	×			
2nd	×			

Setting B

Surface
+/+
+/ -/ -/+

1st
×
×
×

<td

Setting C

1st

2nd

X

Х

X

Setting D

Surface	+/+	+/-	-/-	-/+
1st	×	×	×	×
2nd	×	×	×	×

planar-planar (parallel)

- varying thickness from 100 to 99µm

X

X

X

Х

planar-planar (parallel)

- varying thickness from 100 to 99µm

Constructive and destructive interference alternatively shows up when the thickness of plate varies.

planar-planar (non-parallel)

- center thickness 100 µm
- tilt of first surface

planar-planar (non-parallel)

- center thickness 100µm
- tilt of first surface

cylindrical-planar

- center thickness 100 µm
- cylindrical surface radius 1 m

planar-spherical

- center thickness 100 µm
- spherical surface radius -1 m

Non-sequential simulation time of etalon with curved surfaces: few seconds and less

Collimation System: Sequential Simulation

Collimation System: Non-Sequential Simulation

Physical-Optics Modeling of Interferometer

polarization

Connecting Field Solvers: Example

High flexibility for different interferometer setups.

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Laser-Based Michelson Interferometer and Interference Fringe Exploration

Modeling Task

Result with Equivalent Optical Path

Result with Shifted Movable Mirror

Result with Tilted Movable Mirror

Result with Shifted and Tilted Movable Mirror

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Mach-Zehnder Interferometer

Modeling Task

Interference Fringe Due to Component Tilt

Calculation of interference pattern including element tilt takes less than 2 seconds!

Interference Fringe Due to Component Shift

Calculation of interference pattern including element shift takes less than 2 seconds!

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Fizeau Interferometer for Optical Testing

Modeling Task

Tilted Planar Surface under Observation

Cylindrical Surface under Observation

- • ×

1.86

0.93

Spherical Surface under Observation

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Coherence Measurement Using Michelson Interferometer and Fourier Transform Spectroscopy

Modeling Task

Lateral Interference Fringes – 50nm Bandwidth

Lateral Interference Fringes – 100nm Bandwidth

Pointwise Measurement

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

White-Light Michelson Interferometer

Modeling Task

Change in Interference Fringes

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Full-Field Optical Coherence Scanning Interferometry

Modeling Task

Simulated Interference Fringes

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Examination of Sodium D Lines with Etalon

Modeling Task

Visualization of Both Spectrum Lines

Finesse vs. Coating Reflectance

Finesse vs. Coating Reflectance

the higher reflectance, the higher finesse

extracting 1D data along the diagonal direction /

Finesse vs. Coating Reflectance

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Generation of Spatially Varying Polarization by Interference with Polarized Light

Modeling Task

Interference Pattern Changes with Polarizer Rotation

0.25

0 >

Y [mm]

[mm]

Interference fringes start to disappear, when polarizer rotates from parallel to orthogonal orientation.

Interference Pattern Changes with Polarizer Rotation

Interference Pattern

Modeling and Design Examples in VirtualLab Fusion

- Michelson interferometer
- Mach-Zehnder interferometer
- Fizeau interferometer
- Coherence measurement
- White light interferometry
- Coherence scanning interferometry
- Spectroscopy with Etalon
- Locally polarized fields by interference
- Gouy phase shift demonstration

Observation of Gouy Phase Shift in a Mach-Zehnder Interferometer

Modeling Task

Interference Pattern

Interference Pattern

Conclusion

- Connecting field solvers enables fast physical-optics modeling
- Channel concept allows non-sequential physical-optics modeling

High flexibility for physical-optics analysis of optical interferometers!

Submit your paper to EOS Topics Meeting

ENS

European Optical Society

Coherence for Europe

16. – 19. September 2019 Jena, Germany

EOS Topical Meeting on Diffractive Optics 2019

Guest of Honor & Plenary Speaker: Bernard Kress (Microsoft, USA)

Coherence for Europe

EOS Topi on Diffra

Invited Speakers

Benfeng Bai, Tsinghua University, China **Sven Burger**, Zuse Institute Berlin, Germany

Andreas Erdmann, Fraunhofer IISB Erlangen, Germany

Patrice Genevet, Université côte d'azur, France

Michael A. Golub, Tel Aviv University, Israel

Tommi Hakala, University of Eastern Finland, Finland

Jürgen Jahns, Fernuniversität in Hagen, Germany

Uwe Zeitner, Fraunhofer IOF Jena, Germany LIGHTTRANS

16. – 19. September 2019 Jena, Germany

Submit your paper to EOS Topics Meeting

ENS

European Optical Society

Coherence for Europe

16. – 19. September 2019 Jena, Germany

EOS Topical Meeting on Diffractive Optics 2019

Thank You!

76