

DGaO 2019, Darmstadt, June 13, 2019

Challenges and Solutions in the Design of Lightguides for XR Glasses

C. Hellmann**, R. Knoth**, S. Steiner**, S. Zhang**, F. Wyrowski* *University of Jena, ** LightTrans GmbH

Microsoft HoloLens 2 Presented Sunday, February 24, 2019

Lightguide technology with diffractive optics!

Microsoft has invested in the development for 10 years with huge resources.

HoloLens V1 and V2: Comparison

Figure 30: Display engines based on LCoS imager as in HoloLens V1 (top, 2016) and laser MEMS scanner as in HoloLens V2 (bottom, 2019).

Courtesy Bernard Kress

Lightguide Concept: Light Engine

Lightguide Concept: Light Engine

Lightguide Concept: In/Out Coupling

Lightguide Concept: In/Out Coupling

Lightguide Concept: Exit Pupil Expansion

Lightguide Concept: Exit Pupil Expansion

Lightguide Concept: Fundamental Design Criteria

Lightguide Concept: Fundamental Design Criteria

"Or if not possible (usually the case), produce a non uniform map over the FOV that does not change with the pupil position over the eyebox. FOV non uniformity can be compensated in software, eye box non uniformity is very difficult to compensate, even with pupil tracking."

Bernard Kress, Microsoft

Lightguide Concept: Fundamental Design Criteria

Example Geometries of Lightguide Systems

Lightguide Concept: Modeling Task

Calculate radiance/illuminance and MTF per FOV mode including

- Rigorous modeling of gratings
- Polarization
- Interference
- Coherence

Connecting field solvers

Typical Modeling Situation for AR&MR Lightguide

Levola Type Geometry of Eye Pupil Expansion (EPE)

Levola Type Geometry of Eye Pupil Expansion (EPE)

Demo of Mini Mach-Zehnder Inferferometer Lightpaths

Lightguide Setup & Evaluation of Outcoupled Light

each of these beam footprints derives from multiple light modes from different light paths

locally varying polarizations

due to the different light paths whose beams have encountered different grating incidents

any grating region, the further

propagation varies for the different

light portions; this causes these

segmented beam footprints

light passing the eye pupil

Eye pupil is (partly) filled with numerous modes with specific but varying mutual correlation

Coherent & Incoherent PSF & MTF Evaluation (Pupil to Retina)

-10

-15

-20

-10

X [µm]

-1

0

X [mm]

1

≻

Density

Line

0

0

 \sim

4

-2

0

Line Density X [1E2 cycles/mm]

2

0.4

2 0 Ч С

2

Line Density X [1E2 cycles/mm]

1

3

4

0

Physical-Optics Modeling

The light passing the eye pupil typically consists of

- differently truncated & polarized beams
- different wavelength & lateral light modes
 - coherent
 - incoherent
 - partially coherent

For the different numerical circumstances, VirtualLab provides approximated and rigorous bandwidth modeling techniques!

→ Thus, this light could also look like the following ...

with typical source bandwidths ...

Ethio Responses
- Segar Ansara un esta la fermina de la construcción de la const

Energy conservation

Ultimate test: Evaluation of overall flux through all surfaces of waveguide must provide efficiency close to 100%

Modeling Task: In- and Outcoupling

Result by 3D Ray Tracing (Working Orders)

Result by 3D Ray Tracing (All Orders)

Rigorous Overall Efficiency Evaluation

- Physical-optics analysis of all lightpaths.
- Combination including polarization and coherence!

Detector	Calculated Efficiency
Transmission @ Incoupling	0.416%
Reflection @ Incoupling	11.997%
Side Wall #1	1.194%
Side Wall #2	6.778%
Reflection @ Outcoupling	77.983%
Transmission @ Outcoupling	1.546%
Total	99.915%

Optical Design Strategies

- Design: Parametric optimization is the standard optical design technique. This approach fails in ever more cases because of the growing complexity of components and systems.
- We propose to accompany parametric optimization with systematic design approaches.

Systematic Waveguide Design Example

Ray Tracing Illustration of Typical Paths Through Lightguide

Ray Tracing Illustration of Typical Paths Through Lightguide

Ray Tracing Illustration of Typical Paths Through Lightguide

Grating Design for FOV Angle (0°, 0°)

Merit Function	Value
FOV Angle	$lpha=0^\circ$; $eta=0^\circ$
Uniformity Error	0.34%

Grating Design for FOV Angle (0°, 0°)

FOV Angle	$lpha=0^\circ$; $eta=0^\circ$
Uniformity Error	0.34%

Grating Design for FOV Angle (5°, 3°)

Merit Function	Value
FOV Angle	$\alpha = 5^{\circ}; \beta = 3^{\circ}$
Uniformity Error	2.76%

Grating Design for FOV Angle (5°, 3°)

Combination of Different FOV Designs

- The basis for the design of a diffractive waveguide for different FOV angles is the capability to do the **design per angle**.
- Afterwards the designs of a set of FOV angles can be combined.

Voronoi Segmentation

Combination of Different FOV Designs

- The basis for the design of a diffractive waveguide for different FOV angles is the capability to do the <u>design per angle</u>.
- Afterwards the designs of a set of FOV angles can be combined.

Voronoi Segmentation

Combined Designed System Configuration

Lens source: A_019 and C_001 in Zebase

Design for Multiple FOV Modes: Waveguide

Design for Multiple FOV Modes: Waveguide

Final Design Results: Compromise

Uniformity Error 30.35%

mouc	Merrer anotion	Value
#2	FOV Angle	$\alpha = 5^{\circ}; \beta = 3^{\circ}$
#2	Uniformity Error	43.05%

Final Design Results: Compromise

Conclusion

- Connecting field solvers enables practical physicaloptics modeling of lightguides for AR&VR.
- VirtualLab Fusion provides all modeling techniques on one single platform.
- Parametric optimization must be combined with systematic design techniques, which includes inverse approaches.

Steady R&D in lightguide modeling and design.

Submit your paper to EOS Topics Meeting

FNS

European Optical Society

Coherence for Europe

16. – 19. September 2019 Jena, Germany

EOS Topical Meeting on Diffractive Optics 2019

Guest of Honor & Plenary Speaker: Bernard Kress (Microsoft, USA)

Coherence for Europe

EOS Topi on Diffra

Invited Speakers

Benfeng Bai, Tsinghua University, China **Sven Burger**, Zuse Institute Berlin, Germany

Andreas Erdmann, Fraunhofer IISB Erlangen, Germany

Patrice Genevet, Université côte d'azur, France

Michael A. Golub, Tel Aviv University, Israel

Tommi Hakala, University of Eastern Finland, Finland

Jürgen Jahns, Fernuniversität in Hagen, Germany

Uwe Zeitner, Fraunhofer IOF Jena, Germany FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

16. – 19. September 2019 Jena, Germany

Submit your paper to EOS Topics Meeting

FNS

European Optical Society

Coherence for Europe

16. – 19. September 2019 Jena, Germany

EOS Topical Meeting on Diffractive Optics 2019

Thank You!