

OASIS 180923

Optimization of Coupling Gratings for Lightguide-Based Displays

Speaker: Huiying Zhong¹

Roberto Knoth¹, Stefan Steiner¹, Site Zhang¹, Yichen Liu², Christian Hellmann³, and Frank Wyrowski²

¹ LightTrans International UG

² Applied Computational Optics Group, Friedrich-Schiller-Universität Jena

³ Wyrowski Photonics GmbH

Jena, Germany

University of Jena

Wyrowski Photonics

LightTrans International

Optical Design Software and Services

Augmented / Mixed Reality by Lightguide-Based Displays

Lightguide Approach

Lightguide Approach

Task: Workflow of designing coupling grating with considering a certain field of view (FOV).

Lightguide Approach

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Workflow:

- decide the period of grating by k-domain thinking
- parametric optimization of the grating to achieve high coupling efficiency and uniform efficiency over FOV

Mathematical Modeling: Direction Vector and *k*-Domain

- Field of View (FOV) angles denoted by the Cartesian angles θ_x and $\theta_y.$
- This defines a unit direction vector according to

$$\hat{\boldsymbol{s}} \stackrel{\text{def}}{=} \frac{\left(\tan\theta_x, \tan\theta_y, 1\right)}{\sqrt{1 + \tan^2\theta_x + \tan^2\theta_y}} \quad \boldsymbol{\boldsymbol{<}}$$

• The vector k of a plane wave is defined by

$$\boldsymbol{k}=k_0n\hat{\boldsymbol{s}},$$

with $k_0 = 2\pi/\lambda$ and the refractive index *n* of the medium in which we consider the wave.

$$\begin{split} & \boldsymbol{\kappa} = (k_x,k_y) \\ & k_z = \sqrt{(k_0n)^2 - (k_x^2 + k_y^2)} \\ & \text{For propagating wave,} \\ & k_x^2 + k_y^2 \leqslant (k_0n)^2 \end{split}$$

plane wave with largest inclined angle

 (θ_x, θ_y)

Lightguide Coupling by Gratings

A grating is an elegant component for the coupling because the FOV is shifted in the k-domain under consideration of the grating vector G.

 $k_0 n^{\lg}$ $k_0 n^{\mathrm{air}}$ $k_0 n^{\lg} \ge |\boldsymbol{\kappa}^{\lg}| \ge k_0 n^{\operatorname{air}}$ FOV z k_x n^{air} $\boldsymbol{\kappa}^{\mathrm{lg}} = k_0 n^{\mathrm{lg}} \hat{\mathrm{s}}^{\mathrm{in}}$ h x n^{air} $\boldsymbol{\kappa}^{\mathrm{in}} = k_0 n^{\mathrm{air}} \hat{\boldsymbol{s}}^{\mathrm{in}}_{\perp}$ Calculated by FOV angle grating $(heta_x, heta_y)$

 $\mathbf{A}k_y$

Lightguide Coupling by Gratings

A grating is an elegant component for the coupling because the FOV is shifted in the k-domain under consideration of the grating vector G.

 $k_0 n^{\lg}$ $k_0 n^{\mathrm{air}}$ $k_0 n^{\lg} \ge |\boldsymbol{\kappa}^{\lg}| \ge k_0 n^{\operatorname{air}}$ FOV z k_x n^{air} $\boldsymbol{\kappa}^{\mathrm{lg}} = k_0 n^{\mathrm{lg}} \hat{\mathrm{s}}^{\mathrm{in}}$ h x n^{air} $\boldsymbol{\kappa}^{\mathrm{in}} = k_0 n^{\mathrm{air}} \hat{\boldsymbol{s}}^{\mathrm{in}}_{\perp}$ Calculated by FOV angle grating $(heta_x, heta_y)$

 $\mathbf{A}k_y$

Lightguide Coupling by Gratings

A grating is an elegant component for the coupling because the FOV is shifted in the k-domain under consideration of the grating vector G.

 $k_0 n^{\lg} \ge \left| \boldsymbol{\kappa}^{\operatorname{in}} + \boldsymbol{m} \, \boldsymbol{G} \right| \ge k_0 n^{\operatorname{air}}$

In general, the 2D-periodic grating vector has two components

 $oldsymbol{G} = (rac{2\pi}{p_x}, rac{2\pi}{p_y})^T$

with period along the x- and y-axis (p_x, p_y) and the diffraction order $\boldsymbol{m} = (m_x, m_y)^T$.

Tool: Period Calculation According to Guiding Condition

- In case of 1D-periodic gratings one component of the grating vector becomes zero, so that $G_y = 0$ without loosing of generality.
- From that follows the range of the period of a 1Dperiodic grating geometry to couple a certain FOV into a waveguide:

$$\frac{2\pi}{\sqrt{(k_0 n^{\mathrm{air}})^2 - (k_y^{\mathrm{in}})^2} - k_x^{\mathrm{in}}} \ge p \ge \frac{2\pi}{\sqrt{(k_0 n^{\mathrm{lg}})^2 - (k_y^{\mathrm{in}})^2} - k_x^{\mathrm{in}}}$$

Input to the VirtualLab Module

C# Module: Header
using System;
using VirtualLabAPI.Core.Common;
using VirtualLabAPI.Core.Modules;
using VirtualLabAPI.Core.Numerics;
using VirtualLabAPI.Core.SupportFunctions;
<pre>namespace OwnCode { public class VLModule : IVLModule { //define wavelength for evaluations double wavelength = 532e-9; //define refractive index of surrounding medium double refractiveIndexSurrounding = 1; //define refractiveIndexSubstrate double refractiveIndexSubstrate = 2; //define FOV rectangle (cartesian angles) VectorD FOV_CartesianAngles = new VectorD(30, 20); } } </pre>

Output of the VirtualLab Module

C# Module: Output	
<pre>public void Run() { []</pre>	
<pre>//output of results if(minimumPeriod >= maximumPeriod){ //log maximum period Globals.DataDisplay.LogMessage("The specified field of view can not be hand</pre>	<pre>iled (completely coupled into the on."); </pre>
<pre>//log minimum period Globals.DataDisplay.LogMessage("Minimum Period = " + PhysicalUnits.FormatPh PhysicalProperty.Length));</pre>	ysicalUnit(minimumPeriod,
	Messages [11/22/2018 12:17:18] Compile successful [11/22/2018 12:17:18] Module started [11/22/2018 12:17:18] Maximum Period = 422.6183 nm [11/22/2018 12:17:18] Minimum Period = 306.1351 nm [11/22/2018 12:17:18] Thread finished normally
	Messages Detector Results

Optimization Task

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Initialization of the Optical Setup

WYROWSKI VirtualLab FUSION FAST PHYSICAL OPTICS SOFTWARE

- Initial Setup in VirtualLab Fusion
 - Select the structure of grating
 - Modeling technique of grating is selected: Fourier Modal Method (FMM)
 - The detector returns value of merit function
 - Mean efficiency
 - Efficiency contrast (uniform contrast) over FOV

Simulation Results and Configuration of the Merit Function

Inputs

- variation of the fill factor c/p with the
 slit width c and the period p
 > 0.1% to 99.9%
- variation of the modulation depth h
 50 nm to 1500 nm

Initial Configuration of Grating		
fill factor	50.00%	
modulation depth	400.00nm	
period	410nm	
operating order	1 st transmitted	

CAE-BASED ROBUST DESIGN OPTIMIZATION

optiSLang®

Software for sensitivity analysis, multiobjective and multidisciplinary optimization, robustness evaluation, reliability analysis and Robust Design Optimization

Optimization Workflow

- the following optimization workflow is applied to design a binary grating for efficient lightguide coupling:
 - 1. Define the inputs and their ranges, start with a reference input combination
 - 2. Perform the optimization with several simulations
 - 3. Calculate the corresponding outputs
 - 4. Evaluation of the defined objectives
 - 5. Next iteration with new inputs
- the optimization algorithm stops after certain iterations and/ or when no more improvement of the objectives can be achieved

Optimization Results of optiSLang

- the optimization results are plotted as a function of the merit functions
 - mean efficiency
 - uniformity contrast
- the Pareto front indicates the optimum compromise between the two merit functions (highlighted)
- any optimization result at the pareto front might selected depending on the needs of the optical designer

Advanced Evaluation of the Optimization Results

- furthermore, the same colors are visualized on the Pareto front (2) to visualize the clusters (here: the impact of the slit width on both objectives)
- therefrom, the optical designer is able to select a robust design with the best compromise between the input parameters and the output parameters

- for a better understanding how the input parameters are correlated to the output parameters, the Pareto front designs are visualized in a *Parallel Coordinates Plot* (1)
- in addition, a cluster analysis is performed to group a specific parameter (e.g. relative slit width) into colored clusters for highlighting the relationship of the input parameters to the output parameters
- for example, a low modulation depth and a low relative slit width (red cluster) lead to the best uniformity contrasts but to poor mean efficiencies on the other side

Advanced Evaluation of the Optimization Results

- as a result, a design is selected, which is the best compromise for a prioritized low uniformity contrast and an acceptable mean efficiency including manufacturable grating parameters
- the *Parallel Coordinates Plot* illustrates the corresponding input parameter combination for this design (black curve)

Analysis of Coupling Efficiency for Optimization Result

- finally, the optimization result is analyzed regarding the coupling efficiency using the software VirtualLab Fusion
- as a result, the uniformity contrast was significantly reduced but to the cost of the entire efficiency

Optimization Task

set of plane waves

- field of view (-30..30, -15..15)°
- wavelength 532nm
- linearly polarized along x-axis

Optimization Result of optiSLang

- an evolutionary optimization algorithm is applied using the optimization software optiSLang
- the additional freedom of the slant angle provides additional solutions

Analysis of Coupling Efficiency for Optimization Results

www.LightTrans.com

Conclusion

• Workflow of designing a coupling grating of lightguide, with considering a certain field of view (FOV)

 fix the period of grating by using kdomain thinking

 parametric optimization to achieve a high effciency which is uniform over desired FOV

Thank you!