

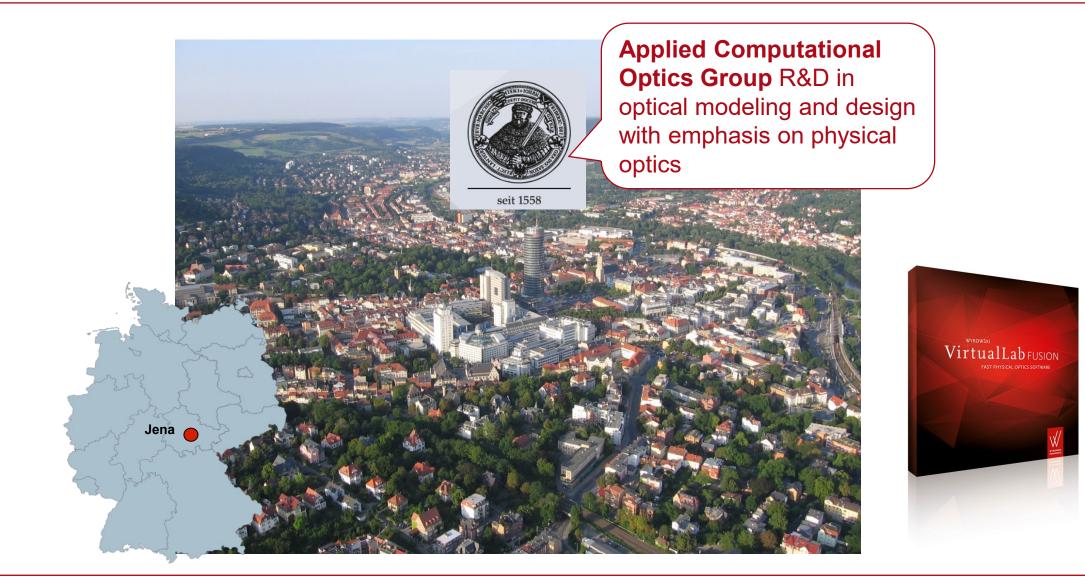
OASIS 2019-04-01

A K-Domain Method for Fast Propagation of Electromagnetic Fields through Graded-Index Media

Huiying Zhong^{1,2}, Site Zhang², Rui Shi¹, Christian Hellmann³, and Frank Wyrowski¹ ¹Applied Computational Optics Group, Friedrich Schiller University Jena, Germany, 07747 ²LightTrans International UG, Jena, Germany, 07745 ³Wyrowski Photonics GmbH, Jena, Germany, 07745

Jena, Germany

University of Jena

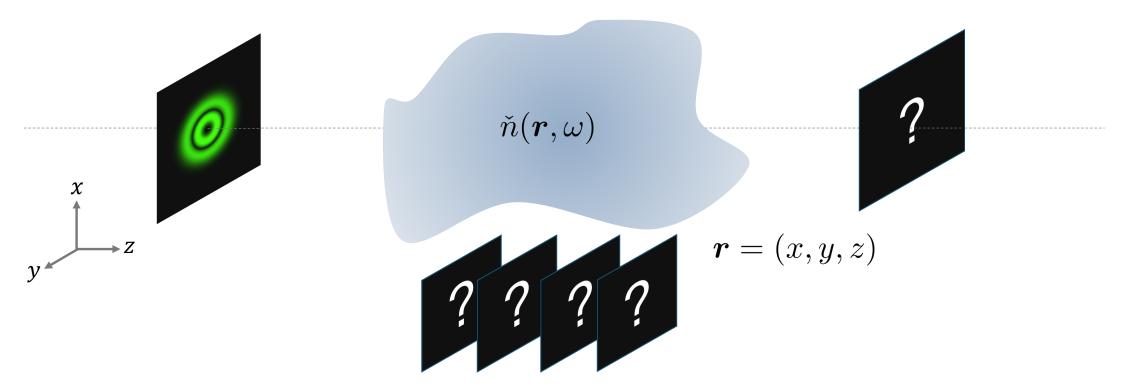


Wyrowski Photonics

LightTrans International

Optical Design Software and Services

Task Description



How to calculate an electromagnetic field progation though graded-index media?

A K-Domain Method for Fast Propagation of Electromagnetic Fields through Graded-Index Media

ر مان خاط و هو ماور و خاط رو ما حاط را خاط را حاط و مار و خاط و را خاط و را خاط و را خاط را حر خاط مار را ما خاط و خاط

$$\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r},\omega) = i\omega\mu_0 \boldsymbol{H}(\boldsymbol{r},\omega) \tag{1}$$

$$\nabla \times \boldsymbol{H}(\boldsymbol{r},\omega) = i\omega\epsilon(\boldsymbol{r},\omega)\boldsymbol{E}(\boldsymbol{r},\omega) \qquad \epsilon(\boldsymbol{r},\omega) = \check{n}^2(\boldsymbol{r},\omega)$$
(2)

Now we define $V(r, \omega) = \{E_x, E_y, E_z, \sqrt{\frac{\mu_0}{\epsilon_0}}H_x, \sqrt{\frac{\mu_0}{\epsilon_0}}H_y, \sqrt{\frac{\mu_0}{\epsilon_0}}H_z\}^T(r, \omega)$. Then Eqn. (1) and (2) can be rewritten as

$$\begin{pmatrix} \partial_{y}V_{3}(\boldsymbol{r}) - \partial_{z}V_{2}(\boldsymbol{r}) \\ \partial_{z}V_{1}(\boldsymbol{r}) - \partial_{x}V_{3}(\boldsymbol{r}) \\ \partial_{x}V_{2}(\boldsymbol{r}) - \partial_{y}V_{1}(\boldsymbol{r}) \end{pmatrix} = \mathrm{i}k_{0} \begin{pmatrix} V_{4}(\boldsymbol{r}) \\ V_{5}(\boldsymbol{r}) \\ V_{6}(\boldsymbol{r}) \end{pmatrix}$$
(3)
$$\begin{pmatrix} \partial_{y}V_{6}(\boldsymbol{r}) - \partial_{z}V_{5}(\boldsymbol{r}) \\ \partial_{z}V_{4}(\boldsymbol{r}) - \partial_{x}V_{6}(\boldsymbol{r}) \\ \partial_{x}V_{5}(\boldsymbol{r}) - \partial_{y}V_{4}(\boldsymbol{r}) \end{pmatrix} = -\mathrm{i}k_{0}\epsilon(\boldsymbol{r}) \begin{pmatrix} V_{1}(\boldsymbol{r}) \\ V_{2}(\boldsymbol{r}) \\ V_{3}(\boldsymbol{r}) \end{pmatrix}$$
(4)

$$\begin{pmatrix} \partial_y V_3(\boldsymbol{r}) - \partial_z V_2(\boldsymbol{r}) \\ \partial_z V_1(\boldsymbol{r}) - \partial_x V_3(\boldsymbol{r}) \\ \partial_x V_2(\boldsymbol{r}) - \partial_y V_1(\boldsymbol{r}) \end{pmatrix} = \mathrm{i}k_0 \begin{pmatrix} V_4(\boldsymbol{r}) \\ V_5(\boldsymbol{r}) \\ V_6(\boldsymbol{r}) \end{pmatrix} \begin{pmatrix} \partial_y V_6(\boldsymbol{r}) - \partial_z V_5(\boldsymbol{r}) \\ \partial_z V_4(\boldsymbol{r}) - \partial_x V_6(\boldsymbol{r}) \\ \partial_x V_5(\boldsymbol{r}) - \partial_y V_4(\boldsymbol{r}) \end{pmatrix} = -\mathrm{i}k_0 \epsilon(\boldsymbol{r}) \begin{pmatrix} V_1(\boldsymbol{r}) \\ V_2(\boldsymbol{r}) \\ V_3(\boldsymbol{r}) \end{pmatrix}$$
(3-4)

In the plane z, we represent $V_{\ell}(\rho, z)$ by inverse Fourier transform $\rho = (x, y)$

$$V_{\ell}(\boldsymbol{\rho}, z) = \mathcal{F}_{k}^{-1} \tilde{V}_{\ell}(\boldsymbol{\kappa}, z) = \frac{1}{2\pi} \iint_{-\infty}^{+\infty} dk_{x} dk_{y} \tilde{V}_{\ell}(\boldsymbol{\kappa}, z) \exp(i\boldsymbol{\kappa} \cdot \boldsymbol{\rho}).$$
 (5)
Eventuation to Eqn. (3) and (4), i.e.,
$$\boldsymbol{\kappa} = (\kappa_{x}, \kappa_{y})$$

And substitute into Eqn. (3) and (4), i.e.,

$$\partial_x V_{\ell}(\boldsymbol{\rho}, z) = \frac{1}{2\pi} \iint_{-\infty}^{+\infty} \mathrm{d}k_x \, \mathrm{d}k_y \, \mathrm{i}\kappa_x \tilde{V}_{\ell}(\boldsymbol{\kappa}, z) \exp(\mathrm{i}\boldsymbol{\kappa} \cdot \boldsymbol{\rho})$$
$$\partial_y V_{\ell}(\boldsymbol{\rho}, z) = \frac{1}{2\pi} \iint_{-\infty}^{+\infty} \mathrm{d}k_x \, \mathrm{d}k_y \, \mathrm{i}\kappa_y \tilde{V}_{\ell}(\boldsymbol{\kappa}, z) \exp(\mathrm{i}\boldsymbol{\kappa} \cdot \boldsymbol{\rho})$$

and

$$\begin{pmatrix} \partial_y V_3(\boldsymbol{r}) - \partial_z V_2(\boldsymbol{r}) \\ \partial_z V_1(\boldsymbol{r}) - \partial_x V_3(\boldsymbol{r}) \\ \partial_x V_2(\boldsymbol{r}) - \partial_y V_1(\boldsymbol{r}) \end{pmatrix} = \mathrm{i}k_0 \begin{pmatrix} V_4(\boldsymbol{r}) \\ V_5(\boldsymbol{r}) \\ V_6(\boldsymbol{r}) \end{pmatrix} \begin{pmatrix} \partial_y V_6(\boldsymbol{r}) - \partial_z V_5(\boldsymbol{r}) \\ \partial_z V_4(\boldsymbol{r}) - \partial_x V_6(\boldsymbol{r}) \\ \partial_x V_5(\boldsymbol{r}) - \partial_y V_4(\boldsymbol{r}) \end{pmatrix} = -\mathrm{i}k_0 \epsilon(\boldsymbol{r}) \begin{pmatrix} V_1(\boldsymbol{r}) \\ V_2(\boldsymbol{r}) \\ V_3(\boldsymbol{r}) \end{pmatrix}$$
(3-4)

Eqn. (3) and (4) become

$$\begin{pmatrix} i\kappa_y \tilde{V}_3(\boldsymbol{\kappa}, z) - \partial_z \tilde{V}_2(\boldsymbol{\kappa}, z) \\ \partial_z \tilde{V}_1(\boldsymbol{\kappa}, z) - i\kappa_x \tilde{V}_3(\boldsymbol{\kappa}, z) \\ i\kappa_x \tilde{V}_2(\boldsymbol{\kappa}, z) - i\kappa_y \tilde{V}_1(\boldsymbol{\kappa}, z) \end{pmatrix} = ik_0 \begin{pmatrix} \tilde{V}_4(\boldsymbol{\kappa}, z) \\ \tilde{V}_5(\boldsymbol{\kappa}, z) \\ \tilde{V}_6(\boldsymbol{\kappa}, z) \end{pmatrix}$$

and

$$\begin{pmatrix} \mathrm{i}\kappa_{y}\tilde{V}_{6}(\boldsymbol{\kappa},z) - \partial_{z}\tilde{V}_{5}(\boldsymbol{\kappa},z) \\ \partial_{z}\tilde{V}_{4}(\boldsymbol{\kappa},z) - \mathrm{i}\kappa_{x}\tilde{V}_{6}(\boldsymbol{\kappa},z) \\ \mathrm{i}\kappa_{x}\tilde{V}_{5}(\boldsymbol{\kappa},z) - \mathrm{i}\kappa_{y}\tilde{V}_{4}(\boldsymbol{\kappa},z) \end{pmatrix} = -\mathrm{i}k_{0}\tilde{\epsilon}(\boldsymbol{\kappa},z)*\begin{pmatrix} \tilde{V}_{1}(\boldsymbol{\kappa},z) \\ \tilde{V}_{2}(\boldsymbol{\kappa},z) \\ \tilde{V}_{3}(\boldsymbol{\kappa},z) \end{pmatrix} \frac{1}{\partial_{z}} = \sum_{k=1}^{N} \left\{ \begin{array}{c} \mathrm{i}\kappa_{y}\tilde{V}_{4}(\boldsymbol{\kappa},z) \\ \mathrm{i}\kappa_{y}\tilde{V}_{5}(\boldsymbol{\kappa},z) - \mathrm{i}\kappa_{y}\tilde{V}_{4}(\boldsymbol{\kappa},z) \end{array} \right\}$$

$$\begin{pmatrix} \partial_y V_3(\boldsymbol{r}) - \partial_z V_2(\boldsymbol{r}) \\ \partial_z V_1(\boldsymbol{r}) - \partial_x V_3(\boldsymbol{r}) \\ \partial_x V_2(\boldsymbol{r}) - \partial_y V_1(\boldsymbol{r}) \end{pmatrix} = \mathrm{i}k_0 \begin{pmatrix} V_4(\boldsymbol{r}) \\ V_5(\boldsymbol{r}) \\ V_6(\boldsymbol{r}) \end{pmatrix} \begin{pmatrix} \partial_y V_6(\boldsymbol{r}) - \partial_z V_5(\boldsymbol{r}) \\ \partial_z V_4(\boldsymbol{r}) - \partial_x V_6(\boldsymbol{r}) \\ \partial_x V_5(\boldsymbol{r}) - \partial_y V_4(\boldsymbol{r}) \end{pmatrix} = -\mathrm{i}k_0 \epsilon(\boldsymbol{r}) \begin{pmatrix} V_1(\boldsymbol{r}) \\ V_2(\boldsymbol{r}) \\ V_3(\boldsymbol{r}) \end{pmatrix}$$
(3-4)

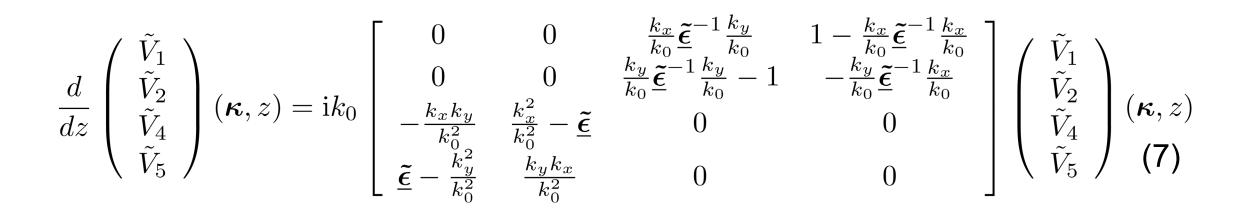
Eqn. (3) and (4) become

$$\begin{pmatrix} i\kappa_y \tilde{V}_3(\boldsymbol{\kappa}, z) - \frac{\mathrm{d}\tilde{V}_2}{\mathrm{d}z}(\boldsymbol{\kappa}, z) \\ \frac{\mathrm{d}\tilde{V}_1}{\mathrm{d}z}(\boldsymbol{\kappa}, z) - i\kappa_x \tilde{V}_3(\boldsymbol{\kappa}, z) \\ i\kappa_x \tilde{V}_2(\boldsymbol{\kappa}, z) - i\kappa_y \tilde{V}_1(\boldsymbol{\kappa}, z) \end{pmatrix} = \mathrm{i}k_0 \begin{pmatrix} \tilde{V}_4(\boldsymbol{\kappa}, z) \\ \tilde{V}_5(\boldsymbol{\kappa}, z) \\ \tilde{V}_6(\boldsymbol{\kappa}, z) \end{pmatrix}$$
(5)

and

$$\begin{pmatrix} i\kappa_y \tilde{V}_6(\boldsymbol{\kappa}, z) - \frac{\mathrm{d}\tilde{V}_5}{\mathrm{d}z}(\boldsymbol{\kappa}, z) \\ \frac{\mathrm{d}\tilde{V}_4}{\mathrm{d}z}(\boldsymbol{\kappa}, z) - i\kappa_x \tilde{V}_6(\boldsymbol{\kappa}, z) \\ i\kappa_x \tilde{V}_5(\boldsymbol{\kappa}, z) - i\kappa_y \tilde{V}_4(\boldsymbol{\kappa}, z) \end{pmatrix} = -ik_0 \tilde{\epsilon}(\boldsymbol{\kappa}, z) * \begin{pmatrix} \tilde{V}_1(\boldsymbol{\kappa}, z) \\ \tilde{V}_2(\boldsymbol{\kappa}, z) \\ \tilde{V}_3(\boldsymbol{\kappa}, z) \end{pmatrix}$$
(6)

Theory: ODE in K-Domain $\frac{\mathrm{d}}{\mathrm{d}z}\tilde{V}_{\perp} = f(z,\tilde{V}_{\perp})$



 $\underline{\tilde{\epsilon}}$ and $\underline{\tilde{\epsilon}}^{-1}$ are the convolution operator. More specifically, $\underline{\tilde{\epsilon}} = \tilde{\epsilon} *$ and $\underline{\tilde{\epsilon}}^{-1} = \epsilon^{-1} *$

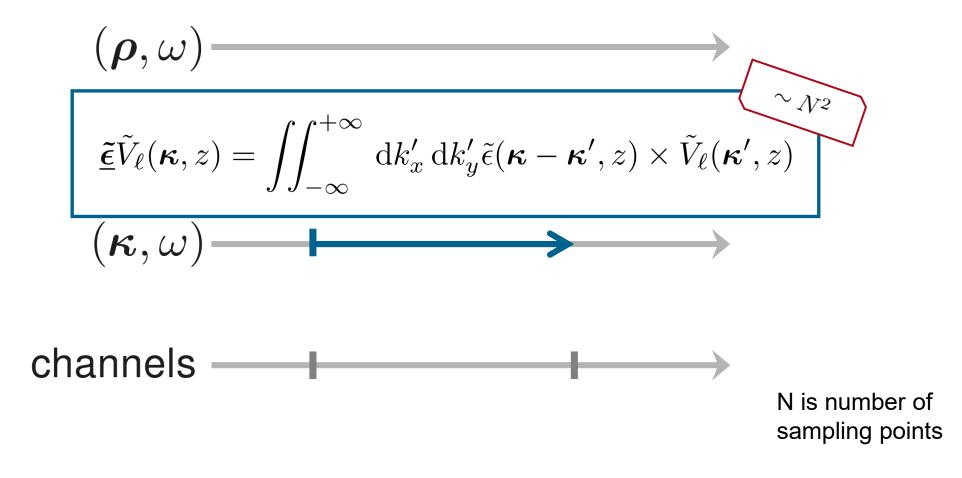
Mathematical task: Solving the ordinary differential equation (ODE) (7), field propagation through media with $\check{n}(\mathbf{r})$ is calculated!

Theory: Solve the ODE

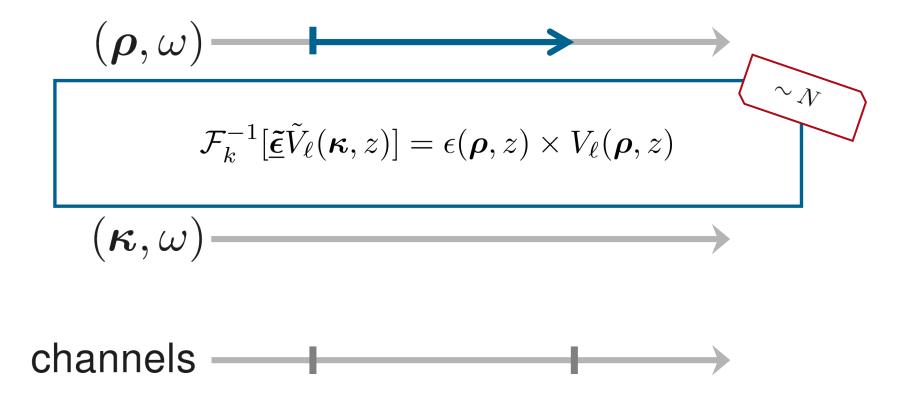
$$\frac{\mathrm{d}}{\mathrm{d}z}\tilde{\boldsymbol{V}}_{\perp} = \boldsymbol{f}(z,\tilde{\boldsymbol{V}}_{\perp})$$

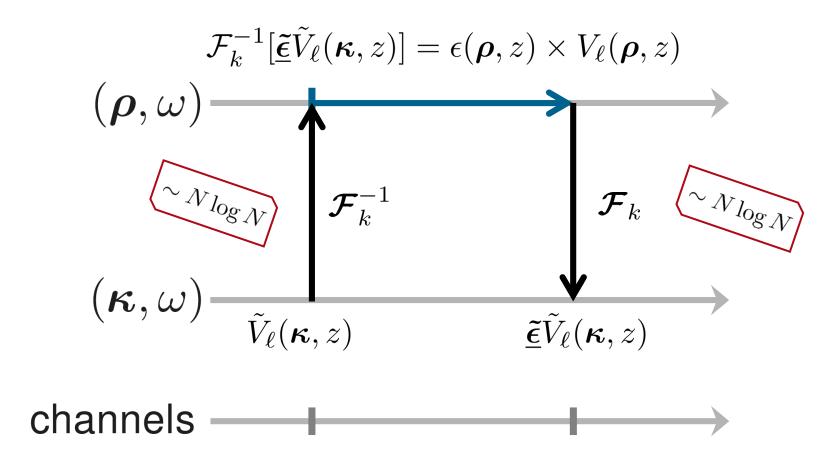
$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z) = \mathrm{i}k_0 \begin{bmatrix} 0 & 0 & \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} & 1 - \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ 0 & 0 & \frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} - 1 & -\frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ -\frac{k_x k_y}{k_0^2} & \frac{k_x^2}{k_0^2} - \tilde{\boldsymbol{\epsilon}} & 0 & 0 \\ \tilde{\boldsymbol{\epsilon}} - \frac{k_y^2}{k_0^2} & \frac{k_y k_x}{k_0^2} & 0 & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z)$$

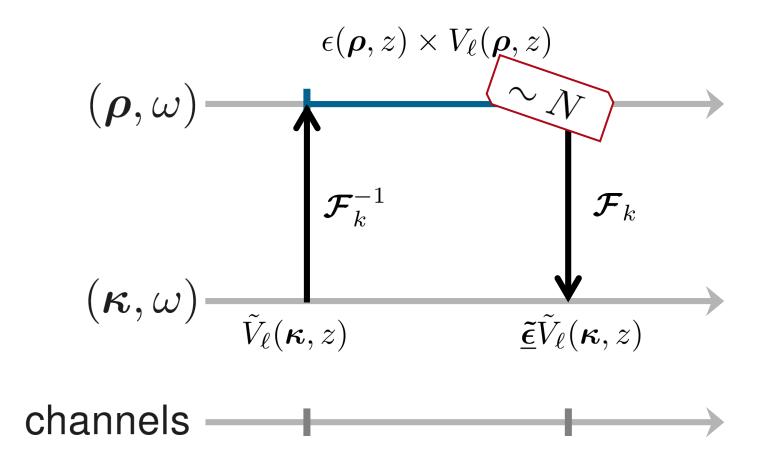
How to deal with operator $\underline{\tilde{\epsilon}}$ and $\underline{\tilde{\epsilon}}^{-1}$?



Theory: Convolution Theorem







$$\frac{d}{dz}\begin{pmatrix}\tilde{V}_{1}\\\tilde{V}_{2}\\\tilde{V}_{4}\\\tilde{V}_{5}\end{pmatrix}(\boldsymbol{\kappa},z) = \mathrm{i}k_{0}\begin{bmatrix}0&0&\frac{k_{x}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{y}}{k_{0}}&1-\frac{k_{x}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{x}}{k_{0}}\\0&0&\frac{k_{y}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{y}}{k_{0}}-1&-\frac{k_{y}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{x}}{k_{0}}\\-\frac{k_{x}k_{y}}{k_{0}^{2}}&\frac{k_{x}^{2}}{k_{0}^{2}}-\tilde{\boldsymbol{\epsilon}}&0&0\\\tilde{\boldsymbol{\epsilon}}^{-}\frac{k_{y}^{2}}{k_{0}^{2}}&\frac{k_{y}k_{x}}{k_{0}^{2}}&0&0\end{bmatrix}\begin{bmatrix}\tilde{V}_{1}\\\tilde{V}_{2}\\\tilde{V}_{4}\\\tilde{V}_{5}\end{bmatrix}(\boldsymbol{\kappa},z)\right]$$

$$\tilde{\boldsymbol{\epsilon}}\tilde{V}_{\ell}(\boldsymbol{\kappa},z) = \mathcal{F}_{k}\left\{\epsilon(\boldsymbol{\rho},z)\times\mathcal{F}_{k}^{-1}\left[\tilde{V}_{\ell}(\boldsymbol{\kappa},z)\right]\right\}$$

$$(\boldsymbol{\rho},\omega) \xrightarrow{\mathcal{F}_{k}^{-1}[\tilde{\boldsymbol{\epsilon}}\tilde{V}_{\ell}(\boldsymbol{\kappa},z)]=\epsilon(\boldsymbol{\rho},z)\times V_{\ell}(\boldsymbol{\rho},z)}{\tilde{\boldsymbol{\epsilon}}_{k}^{-1}(\boldsymbol{\rho},z)\times\mathcal{F}_{k}^{-1}\left[\kappa_{j}\tilde{V}_{\ell}(\boldsymbol{\kappa},z)\right]\right\}$$

$$(\boldsymbol{\kappa},\omega) \xrightarrow{\mathcal{F}_{k}^{-1}}[\boldsymbol{\kappa},\omega] \xrightarrow{\mathcal{F}_{k}^{-1}}[\boldsymbol{\kappa},\omega]$$

channels ------

Theory: Solve the ODE

$$\frac{\mathrm{d}}{\mathrm{d}z}\tilde{\boldsymbol{V}}_{\perp} = \boldsymbol{f}(z,\tilde{\boldsymbol{V}}_{\perp})$$

$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z) = \mathrm{i}k_0 \begin{bmatrix} 0 & 0 & \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} & 1 - \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ 0 & 0 & \frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} - 1 & -\frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ -\frac{k_x k_y}{k_0^2} & \frac{k_x^2}{k_0^2} - \tilde{\boldsymbol{\epsilon}} & 0 & 0 \\ \tilde{\boldsymbol{\epsilon}} - \frac{k_y^2}{k_0^2} & \frac{k_y k_x}{k_0^2} & 0 & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z)$$

ODE solver (initial value problem)

- Euler method
- Taylor series methods
- Runge-Kutta methods

 $egin{array}{ccc} ilde{m{V}}_{\perp}(m{\kappa},z_1) & ilde{m{V}}_{\perp}(m{\kappa},z_i) \ ilde{m{V}}_{\perp}(m{\kappa},z_0) & ilde{m{V}}_{\perp}(m{\kappa},z_{i+1}) \end{array}$ $ilde{m{V}}_{\perp}(m{\kappa},z)$

. . .

$$\frac{\mathrm{d}}{\mathrm{d}z} \tilde{\boldsymbol{V}}_{\perp}^{\mathrm{EM}} = \boldsymbol{f}(z, \tilde{\boldsymbol{V}}_{\perp}^{\mathrm{EM}})$$

$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z) = \mathrm{i}k_0 \begin{bmatrix} 0 & 0 & \frac{k_x}{k_0} \underline{\tilde{\epsilon}}^{-1} \frac{k_y}{k_0} & 1 - \frac{k_x}{k_0} \underline{\tilde{\epsilon}}^{-1} \frac{k_x}{k_0} \\ 0 & 0 & \frac{k_y}{k_0} \underline{\tilde{\epsilon}}^{-1} \frac{k_y}{k_0} - 1 & -\frac{k_y}{k_0} \underline{\tilde{\epsilon}}^{-1} \frac{k_x}{k_0} \\ -\frac{k_x k_y}{k_0^2} & \frac{k_x^2}{k_0^2} - \underline{\tilde{\epsilon}} & 0 & 0 \\ \underline{\tilde{\epsilon}} - \frac{k_y^2}{k_0^2} & \frac{k_y k_x}{k_0^2} & 0 & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z)$$

ODE solver (initial value problem)

- Euler method
- Taylor series methods
- Runge-Kutta methods

. . .

Calculate
$$ilde{m{V}}_{\perp}(m{\kappa},z_{i+1})$$
 from $ilde{m{V}}_{\perp}(m{\kappa},z_i)$

$$\begin{aligned} \boldsymbol{k}_1 &= \Delta z_i \boldsymbol{f}(z_i, \tilde{\boldsymbol{V}}_{\perp}(\boldsymbol{\kappa}, z_i)) \\ \boldsymbol{k}_2 &= \Delta z_i \boldsymbol{f}(z_i + \frac{1}{2}\Delta z_i, \tilde{\boldsymbol{V}}_{\perp}(\boldsymbol{\kappa}, z_i) + \frac{1}{2}\boldsymbol{k}_1) \\ \boldsymbol{k}_3 &= \Delta z_i \boldsymbol{f}(z_i + \frac{1}{2}\Delta z_i, \tilde{\boldsymbol{V}}_{\perp}(\boldsymbol{\kappa}, z_i) + \frac{1}{2}\boldsymbol{k}_2) \\ \boldsymbol{k}_4 &= \Delta z_i \boldsymbol{f}(z_{i+1}, \tilde{\boldsymbol{V}}_{\perp}(\boldsymbol{\kappa}, z_i) + \frac{1}{2}\boldsymbol{k}_3) \\ \tilde{\boldsymbol{V}}_{\perp}(\boldsymbol{\kappa}, z_{i+1}) &= \tilde{\boldsymbol{V}}_{\perp}(\boldsymbol{\kappa}, z_i) + \frac{1}{6}(\boldsymbol{k}_1 + 2\boldsymbol{k}_2 + 2\boldsymbol{k}_3 + \boldsymbol{k}_4) \end{aligned}$$

$$\frac{\mathrm{d}}{\mathrm{d}z} \tilde{\boldsymbol{V}}_{\perp}^{\mathrm{EM}} = \boldsymbol{f}(z, \tilde{\boldsymbol{V}}_{\perp}^{\mathrm{EM}})$$

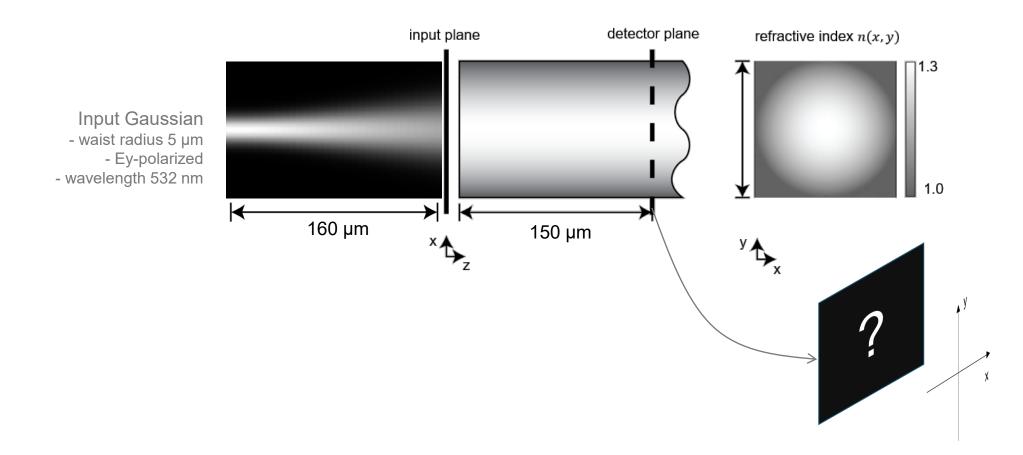
$$\frac{d}{dz}\begin{pmatrix}\tilde{V}_{1}\\\tilde{V}_{2}\\\tilde{V}_{4}\\\tilde{V}_{5}\end{pmatrix}(\boldsymbol{\kappa},z) = \mathrm{i}k_{0}\begin{bmatrix}0&0&\frac{k_{x}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{y}}{k_{0}}&1-\frac{k_{x}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{x}}{k_{0}}\\0&0&\frac{k_{y}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{y}}{k_{0}}&-1&-\frac{k_{y}}{k_{0}}\tilde{\boldsymbol{\epsilon}}^{-1}\frac{k_{x}}{k_{0}}\\-\frac{k_{x}k_{y}}{k_{0}^{2}}&\frac{k_{x}^{2}}{k_{0}^{2}}-\tilde{\boldsymbol{\epsilon}}&0&0\\\tilde{\boldsymbol{\epsilon}}-\frac{k_{y}}{k_{0}^{2}}&\frac{k_{y}k_{x}}{k_{0}^{2}}&0&0\end{bmatrix}\begin{pmatrix}\tilde{V}_{1}\\\tilde{V}_{2}\\\tilde{V}_{4}\\\tilde{V}_{5}\end{pmatrix}(\boldsymbol{\kappa},z)$$
Calculate $\tilde{V}_{\perp}(\boldsymbol{\kappa},z_{i+1})$ from $\tilde{V}_{\perp}(\boldsymbol{\kappa},z_{i})$
Calculate $\tilde{V}_{\perp}(\boldsymbol{\kappa},z_{i+1})$ from $\tilde{V}_{\perp}(\boldsymbol{\kappa},z_{i})$

$$k_{1}=\Delta z_{i}f(z_{i},\tilde{V}_{\perp}(\boldsymbol{\kappa},z_{i})+\frac{1}{2}k_{1})$$

$$k_{2}=\Delta z_{i}f(z_{i}+\frac{1}{2}\Delta z_{i},\tilde{V}_{\perp}(\boldsymbol{\kappa},z_{i})+\frac{1}{2}k_{1})$$

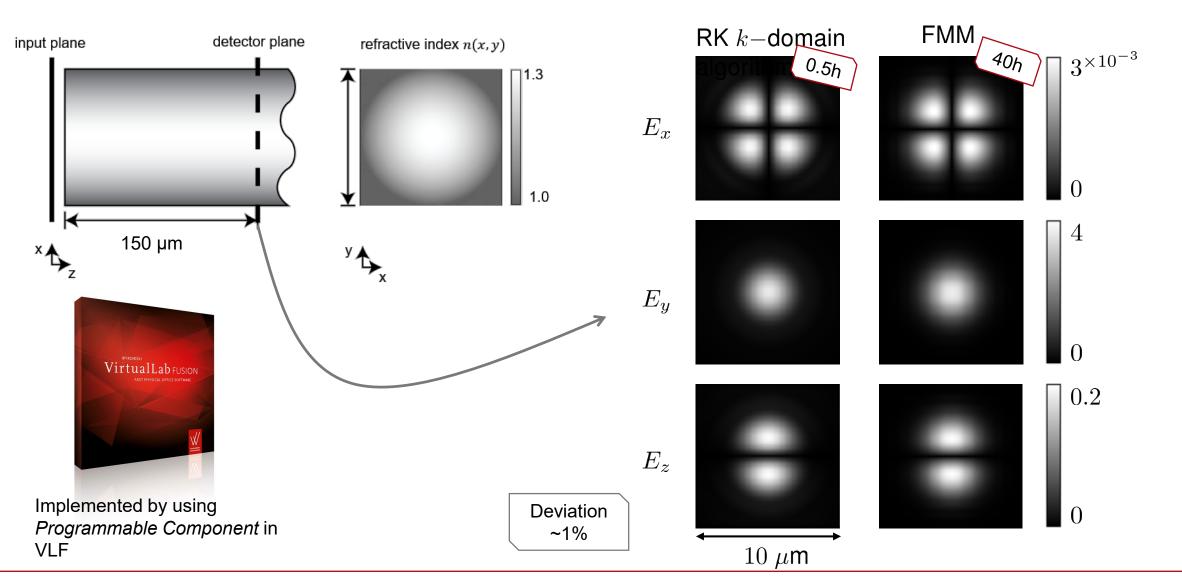
We name the k-domain method as Runge-Kutta k-domain algorithm.

Example: Multimode Fiber



calculate the result fields by Fourier modal method and Runge-Kutta based kdomain algorithm.

Result: Amplitude [V/m] of Output Field



LightTrans International

 $\sim N^3$

 $\sim N \times N_z$

Two-Dimentional Case

$$\partial_y = 0$$

$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_{1} \\ \tilde{V}_{2} \\ \tilde{V}_{4} \\ \tilde{V}_{5} \end{pmatrix} (\boldsymbol{\kappa}, z) = \mathrm{i}k_{0} \begin{bmatrix} 0 & 0 & 0 & 1 - \frac{k_{x}}{k_{0}} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_{x}}{k_{0}} \\ 0 & 0 & -1 & 0 \\ 0 & \frac{k_{x}^{2}}{k_{0}^{2}} - \tilde{\boldsymbol{\epsilon}} & 0 & 0 \\ \tilde{\boldsymbol{\epsilon}} & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_{1} \\ \tilde{V}_{2} \\ \tilde{V}_{4} \\ \tilde{V}_{5} \end{pmatrix} (\boldsymbol{\kappa}, z)$$
(8)

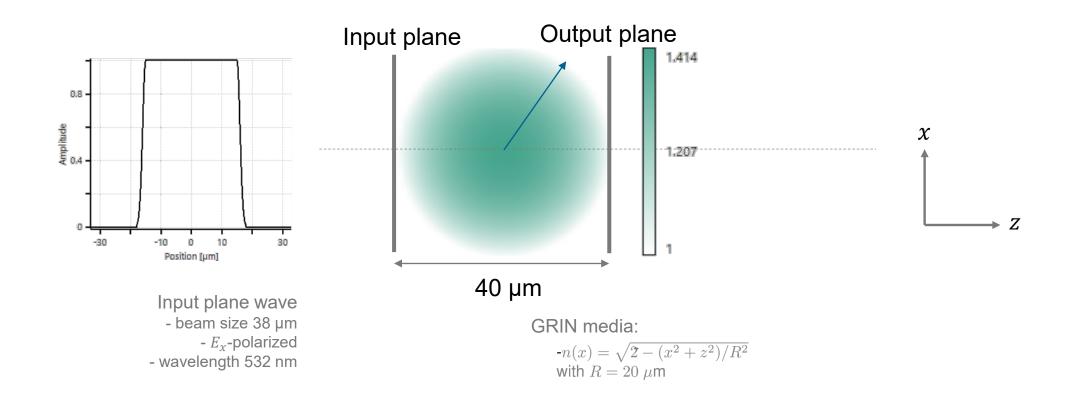
ΤE

$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_2 \\ \tilde{V}_4 \end{pmatrix} (\boldsymbol{\kappa}, z) = ik_0 \begin{bmatrix} 0 & -1 \\ \frac{k_x^2}{k_0^2} - \underline{\tilde{\boldsymbol{\epsilon}}} & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_2 \\ \tilde{V}_4 \end{pmatrix} (\boldsymbol{\kappa}, z)$$
(9)

ТΜ

$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z) = ik_0 \begin{bmatrix} 0 & 1 - \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ \tilde{\boldsymbol{\epsilon}} & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z)$$
(10)

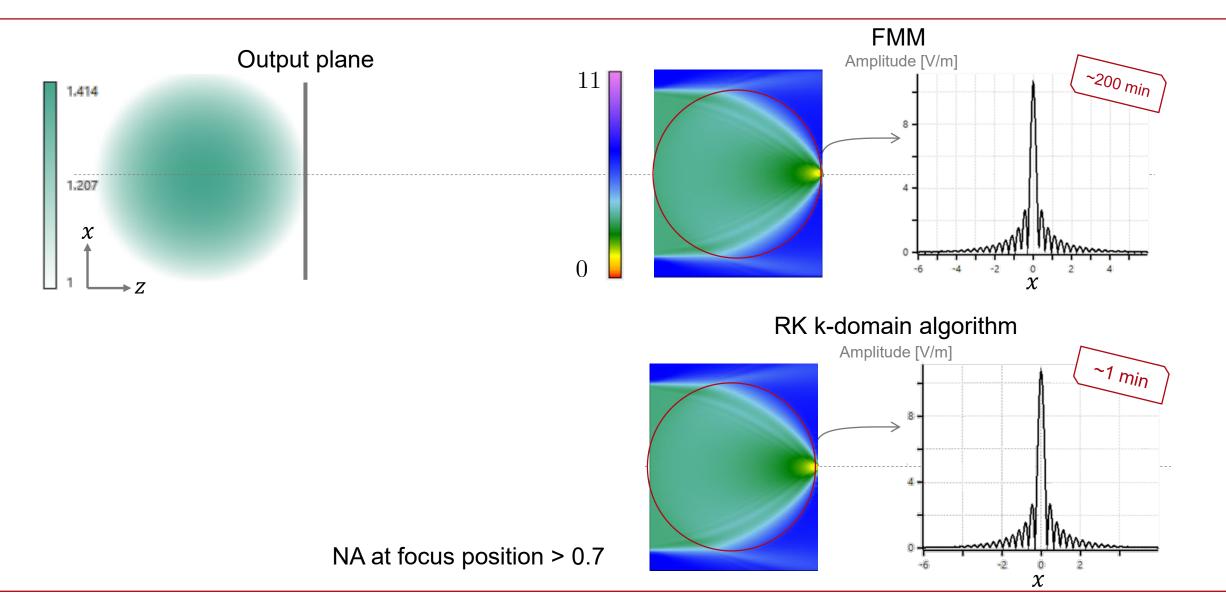
Y-Invariant GRIN Media: Luneburg Cylinder Lens



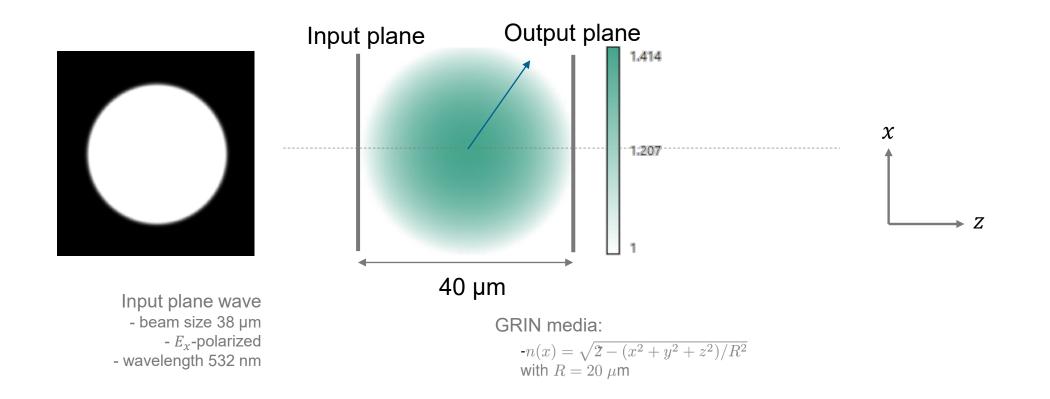
Task: By using FMM (rigorous) and the RK k-domain algorithm

- calculate field propagation in GRIN media xz -plane
- calculate field in the output plane

Result: Amplitude of E_x –**Field**



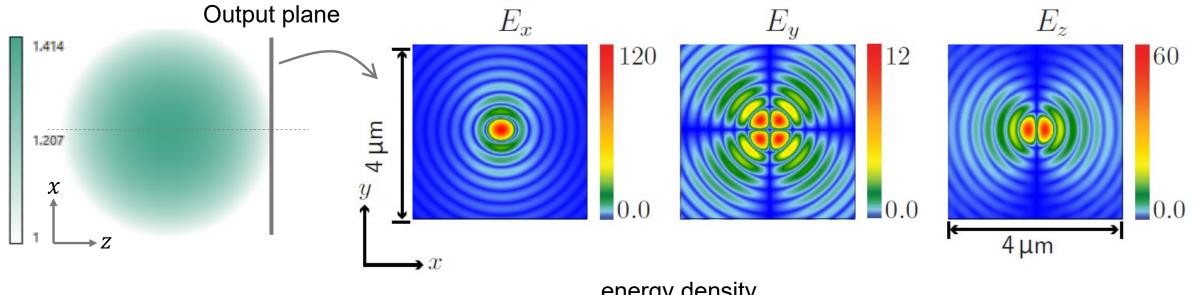
3D Case: Luneburg Lens



Task: By using FMM (rigorous) and the RK k-domain algorithm

- calculate field in the output plane

Result: Amplitude and Energy Density of Electric Fields



energy density

$$\sim |E_x|^2 + |E_y|^2 + |E_z|^2$$

Conclusion

- Develop a fast k-domain algorithm to calculate field propagation through graded-index media
 - Maxwell's equations to derive ODE

$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z) = \mathrm{i}k_0 \begin{bmatrix} 0 & 0 & \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} & 1 - \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ 0 & 0 & \frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} - 1 & -\frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ -\frac{k_x k_y}{k_0^2} & \frac{k_x^2}{k_0^2} - \tilde{\boldsymbol{\epsilon}} & 0 & 0 \\ \tilde{\boldsymbol{\epsilon}} - \frac{k_y^2}{k_0^2} & \frac{k_y k_x}{k_0^2} & 0 & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z)$$

- Solving this ODE by Runge-Kutta method (4th order) slice by slice along z -axis
- By using convolution theorem, convolution in k-domain is realized by multiplication in spatial domain. So numerical effort of this algorithm $\sim N \times N_z$, with *N* is sampling points of field and N_z denoting slice number
- Compared to FMM the RK k-domain algorithm shows advantage when N becomes large, which is general in three dimentional cases; it has no limit in ň(x, y, z) and NA of field.

Outlook: Further Tricks of Solver

• We rewrite $\tilde{V}_{\perp} = \tilde{U}_{\perp} \exp(ik_0 \bar{n}z)$, which abstract the fast changing term of field, ODE becomes

$$\frac{d}{dz} \begin{pmatrix} \tilde{U}_{1} \\ \tilde{U}_{2} \\ \tilde{U}_{4} \\ \tilde{U}_{5} \end{pmatrix} (\boldsymbol{\kappa}, z) = \mathrm{i}k_{0} \begin{bmatrix} -\bar{n} & 0 & \frac{k_{x}}{k_{0}} \tilde{\boldsymbol{\xi}}^{-1} \frac{k_{y}}{k_{0}} & 1 - \frac{k_{x}}{k_{0}} \tilde{\boldsymbol{\xi}}^{-1} \frac{k_{x}}{k_{0}} \\ 0 & -\bar{n} & \frac{k_{y}}{k_{0}} \tilde{\boldsymbol{\xi}}^{-1} \frac{k_{y}}{k_{0}} - 1 & -\frac{k_{y}}{k_{0}} \tilde{\boldsymbol{\xi}}^{-1} \frac{k_{x}}{k_{0}} \\ -\frac{k_{x}k_{y}}{k_{0}^{2}} & \frac{k_{x}^{2}}{k_{0}^{2}} - \tilde{\boldsymbol{\xi}} & -\bar{n} & 0 \\ \frac{\tilde{\boldsymbol{\xi}}}{-} -\frac{k_{y}^{2}}{k_{0}^{2}} & \frac{k_{y}k_{x}}{k_{0}^{2}} & 0 & -\bar{n} \end{bmatrix} \begin{pmatrix} \tilde{U}_{1} \\ \tilde{U}_{2} \\ \tilde{U}_{4} \\ \tilde{U}_{5} \end{pmatrix} (\boldsymbol{\kappa}, z)$$

Slow varying term U_{\perp} is calculated, so N_z can be reduced

• In general case, $\tilde{V}_{\perp} = \tilde{U}_{\perp} \exp(i\tilde{\phi})$ or $V_{\perp} = U_{\perp} \exp(i\psi)$. We need to explore how to predict $\tilde{\psi}$ or ψ and how to perform Fourier transform fast!

Related Talks and Poster Presentations

- Talk: Optimization of coupling gratings for lightguide-based displays Time: Monday, 1 April 2019 | 16:00 – 17:00
- **Poster: Modeling of Diffractive/Meta-Lenses using Fast Physical Optics** Time: Monday, 1 April 2019 | 10:55 – 11:25
- Poster: Vectorial physical-optics modeling of the interaction of a tightly focused beam with a nanoparticle Time: Monday, 1 April 2019 | 10:55 – 11:25

Thank you!

Discussion about Numerical Effort

- The calculation is along z-axis slice by slice. Assume the slice number is N_z .
- In each slice, RK4 is used, which means we calculate four time $f(z, \tilde{V}_{\perp})$ with operations $\sim N$. N is number of sampling points of field

The numerical effort of Runge Kutta based k-domain method is $\sim N \times N_z$ FMM ($\sim N^3 \times N_z$) In this example, $N \sim 10^4$ • FMM $N^3 \sim 10^{12}$ and $N_z = 1$ • Runge-Kutta based k-domain algorithm $N \sim 10^4$ and $\sum_{i=1}^{N} Z$ Advantage of fast calculation when N becomes large, typically in 3D

$$\frac{d}{dz} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z) = \mathrm{i}k_0 \begin{bmatrix} 0 & 0 & \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} & 1 - \frac{k_x}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ 0 & 0 & \frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_y}{k_0} - 1 & -\frac{k_y}{k_0} \tilde{\boldsymbol{\epsilon}}^{-1} \frac{k_x}{k_0} \\ -\frac{k_x k_y}{k_0^2} & \frac{k_x^2}{k_0^2} - \tilde{\boldsymbol{\epsilon}} & 0 & 0 \\ \tilde{\boldsymbol{\epsilon}} - \frac{k_y^2}{k_0^2} & \frac{k_y k_x}{k_0^2} & 0 & 0 \end{bmatrix} \begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ \tilde{V}_4 \\ \tilde{V}_5 \end{pmatrix} (\boldsymbol{\kappa}, z)$$

How to deal with operator $\underline{\tilde{\epsilon}}$ and $\underline{\tilde{\epsilon}}^{-1}$? Instead of convolution (N^2) in k-domain, (inverse) Fourier transform and multiplication in spatial domain is used.

