

Photonics West 2019: VirtualLab Fusion Workshop in cooperation with Zemax

Modeling and Design of Diffractive- and Meta-lenses with VirtualLab Fusion

Frank Wyrowski, Akil Bhagat, Roberto Knoth, Site Zhang

VirtualLab Meta- and Diffractive Surface Solutions

- We prepare a new VirtualLab product for design and modeling of meta- and diffractive surfaces to be released in 2019.
- It will be based on the theory presented in this talk. The examples shown in this talk will be included in the product as special Use Cases together with suitable workflows.

This workshop gives a product preview by presenting its theoretical concepts, the working principles, and application examples.

Structure of Workshop

- Introduction of theory
 - Frank Wyrowski
- Design of binary surfaces in OpticStudio[®]
 - Akil Bhagat
- Physical-optics analysis of imported systems from OpticStudio: Diffractive lenses
 - Roberto Knoth
- Metalenses theory and modeling
 - Site Zhang
- Fabrication export
 - Roberto Knoth

Structure of Workshop

Introduction of theory

- Frank Wyrowski
- Design of binary surfaces in OpticStudio
 - Akil Bhagat
- Physical-optics analysis of imported systems from
 OpticStudio: Diffractive lenses
 - Roberto Knoth
- Metalenses theory and modeling
 - Site Zhang
- Fabrication export
 - Roberto Knoth

Wavefront Surface Response Function

Unifying approach for dealing with different structure concepts in optical modeling and design

Plane Wave Interaction with Plane Surface

- For a field in a plane we use the notation $\rho = (x, y)$ and $V_{\perp}(\rho) = (E_x(\rho), E_y(\rho)).$
- A plane input field is given by

$$V^{\mathrm{in}}_{\perp}(oldsymbol{
ho}) = oldsymbol{U}^{\mathrm{in}}_{\perp} \expig(\mathrm{i} \kappa^{\mathsf{in}} oldsymbol{
ho}ig)$$

with $\boldsymbol{\kappa} = (k_x, k_y)$.

• The transmitted plane output field is given by

$$oldsymbol{V}^{ ext{out}}_{\perp}(oldsymbol{
ho}) = ig(oldsymbol{B}(oldsymbol{\kappa}^{ ext{in}})oldsymbol{U}^{ ext{in}}_{\perp}ig) \expig(\mathrm{i}oldsymbol{\kappa}^{ ext{out}}oldsymbol{
ho}ig)$$

with the Fresnel effect at the surface is expressed by the 2×2 matrix ${\bf B}({\bf \kappa}^{\rm in})$.

• From the boundary conditions follows: $\kappa^{\text{out}} \stackrel{!}{=} \kappa^{\text{in}}$

Plane Wave Interaction with Plane Surface

- From the boundary conditions follows: $\kappa^{\mathsf{out}} \stackrel{!}{=} \kappa^{\mathsf{in}}$
- With $\kappa = k_0 n \hat{s}_{\perp} = k_0 n (\sin \theta \cos \phi, \sin \theta \cos \phi)$ and $\phi = 0$ the law of refraction follows: $n^{\text{in}} \sin \theta^{\text{in}} = n^{\text{out}} \sin \theta^{\text{out}}$.
- For plane wave fields the wavefront phase is given by $\psi(\rho) = \kappa \cdot \rho$.

• With
$$\kappa^{\text{out}} \stackrel{!}{=} \kappa^{\text{in}}$$
 we conclude $\psi^{\text{out}}(\rho) = \psi^{\text{in}}(\rho)$.

• With
$$\nabla_{\perp} = \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\}$$
 we find for plane wave fields:

$$oldsymbol{\kappa} =
abla_{\perp} \psi(oldsymbol{
ho})$$

• Then $\kappa^{\text{out}} \stackrel{!}{=} \kappa^{\text{in}}$, that is the law of refraction, can be expressed by $\nabla_{\perp} \psi^{\text{in}}(\rho) = \nabla_{\perp} \psi^{\text{out}}(\rho)$.

General Field Interaction with Plane Surface

- Consider a general input field $V_{\perp}^{\text{in}}(\rho) = U_{\perp}^{\text{in}}(\rho) \exp(i\psi^{\text{in}}(\rho))$.
- In general the effect of the plane surface on the input field can be expressed by the operator equation $V_{\perp}^{\rm out}(\rho) = \mathcal{B}V_{\perp}^{\rm in}(\rho)$.
- Next we assume that we are allowed to apply the plane wave results locally. In physical optics that means the fields are in its homeomorphic field zone (HFZ).
- In the homeomorphic field zone we can express the effect of the plane surface on the input field locally:

 $\boldsymbol{U}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right) = \mathbf{B}(\boldsymbol{\rho}) \left\{ \boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right) \right\}$

• The local use of the law of refraction can be expressed by:

$$abla_{\perp}\psi^{\mathsf{in}}(oldsymbol{
ho}) =
abla_{\perp}\psi^{\mathsf{out}}(oldsymbol{
ho})$$

General Field Interaction with Plane Surface

• In the homeomorphic field zone we can express the effect of the plane surface on the input field locally:

 $\boldsymbol{U}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right) = \mathbf{B}(\boldsymbol{\rho}) \left\{ \boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right) \right\}$

• The local use of the law of refraction is expressed by:

$$abla_{\perp}\psi^{\mathsf{in}}(\boldsymbol{
ho}) =
abla_{\perp}\psi^{\mathsf{out}}(\boldsymbol{
ho})$$

• In conclusion the effect on the phase is described by the local Fresnel effects:

 $\boldsymbol{U}_{\perp}^{\text{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})\right)$

General Field Interaction with Plane Surface

• Intermediate result: Plane surfaces do not change the wavefront phase of the incident field.

General Field Interaction with Curved Surface

- Intermediate result: Plane surfaces do not change the wavefront phase of the incident field.
- For curved surfaces the modeling can be still applied locally. Then the wavefront phase can be shaped by the shape of the surface:

$$\psi^{\mathsf{out}}(\boldsymbol{\rho}) \neq \psi^{\mathsf{in}}(\boldsymbol{\rho})$$

General Field Interaction with Curved Surface

- Intermediate result: Plane surfaces do not change the wavefront phase of the incident field.
- For curved surfaces the modeling can be still applied locally. Then the wavefront phase can be shaped by the shape of the surface:

 $\psi^{\mathsf{out}}(\boldsymbol{\rho}) \neq \psi^{\mathsf{in}}(\boldsymbol{\rho})$

• In what follows a change of the wavefront phase should be enforced by assuming a Wavefront Response Function $\Delta \psi(\rho)$ instead of (in addition to) a curved surface.

- For plane surfaces we found $\nabla_{\perp}\psi^{\rm in}(\rho)=\nabla_{\perp}\psi^{\rm out}(\rho)$ and in conclusion

$$\boldsymbol{U}_{\perp}^{\text{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\mathsf{in}}) \boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right).$$

- For plane surfaces we found $\nabla_{\perp}\psi^{\rm in}(\rho)=\nabla_{\perp}\psi^{\rm out}(\rho)$ and in conclusion

$$x \qquad V_{\perp}^{\text{in}}(\rho) \qquad V_{\perp}^{\text{out}}(\rho) \\ \downarrow z \qquad \Delta \psi(\rho) \\ \hline Wavefront Surface \\ Response \\ \hline \end{array}$$

$$\boldsymbol{U}_{\perp}^{\text{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})\right).$$

- n^{IN} $egin{aligned} &m{V}_{ot}^{ ext{out}}(m{
 ho}) \ & \Delta\psi(m{
 ho}) \end{aligned}$ $oldsymbol{V}^{\mathrm{in}}_{\perp}(oldsymbol{
 ho})$ \mathcal{X}
- For plane surfaces we found $\nabla_{\perp}\psi^{\rm in}(\rho)=\nabla_{\perp}\psi^{\rm out}(\rho)$ and in conclusion

$$\boldsymbol{U}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\mathsf{in}})\boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\mathsf{in}}(\boldsymbol{\rho})\right).$$

 By introducing the wavefront surface response we assume an effect at the surface of the form

$$\boldsymbol{U}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\mathsf{in}})\boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right)$$

with

$$\psi^{\rm out}(\boldsymbol{\rho}) = \psi^{\rm in}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})$$

and thus

$$abla_{\perp}\psi^{\mathsf{out}}(oldsymbol{
ho}) =
abla_{\perp}\psi^{\mathsf{in}}(oldsymbol{
ho}) +
abla_{\perp}\left(\Delta\psi(oldsymbol{
ho})
ight).$$

 $egin{aligned} V^{ ext{out}}_{ot}(oldsymbol{
ho}) \ \Delta\psi(oldsymbol{
ho}) \end{aligned}$

 $oldsymbol{V}^{\mathrm{in}}_{\perp}(oldsymbol{
ho})$

- For plane surfaces we found $\nabla_{\perp}\psi^{\rm in}(\rho)=\nabla_{\perp}\psi^{\rm out}(\rho)$ and in conclusion

$$n^{\text{in}} \quad n^{\text{out}} \qquad U^{\text{out}}_{\perp}(\rho) \exp(i\psi^{\text{in}}(\rho)) = \left\{ \mathbf{B}(\rho;\psi^{\text{in}}) U^{\text{in}}_{\perp}(\rho) \right\} \exp(i\psi^{\text{in}}(\rho)) .$$
• By introducing the wavefront surface response we assume an effect at the surface of the form

$$\boldsymbol{U}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho})\exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right) = \left\{ \mathbf{B}(\boldsymbol{\rho};\psi^{\mathsf{in}})\boldsymbol{U}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho})\right\}\exp\left(\mathrm{i}\psi^{\mathsf{out}}(\boldsymbol{\rho})\right)$$

with

$$\psi^{\rm out}(\boldsymbol{\rho}) = \psi^{\rm in}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})$$

and thus

$$abla_{\perp}\psi^{\mathsf{out}}(oldsymbol{
ho}) =
abla_{\perp}\psi^{\mathsf{in}}(oldsymbol{
ho}) +
abla_{\perp}\left(\Delta\psi(oldsymbol{
ho})
ight).$$

 \mathcal{X}

• The equation

$$\nabla_{\perp}\psi^{\mathsf{out}}(\boldsymbol{\rho}) = \nabla_{\perp}\psi^{\mathsf{in}}(\boldsymbol{\rho}) + \nabla_{\perp}\left(\Delta\psi(\boldsymbol{\rho})\right)$$

results because of the local plane wave assumption (homeomorphic zone) into

$$oldsymbol{\kappa}^{\mathsf{out}}(oldsymbol{
ho}) = oldsymbol{\kappa}^{\mathsf{in}}(oldsymbol{
ho}) + oldsymbol{K}(oldsymbol{
ho})$$

with $\boldsymbol{K}(\boldsymbol{\rho}) \stackrel{\text{def}}{=} \nabla_{\perp} \left(\Delta \psi(\boldsymbol{\rho}) \right)$.

- That gives a direct access to ray tracing with $\kappa({m
ho})=k_0n\hat{m s}_\perp({m
ho})$ via

$$n^{\mathrm{out}} \hat{\boldsymbol{s}}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) = n^{\mathrm{in}} \hat{\boldsymbol{s}}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) + \boldsymbol{K}(\boldsymbol{\rho})/k_0.$$

How to Realize a Desired Wavefront Surface Response (WSR)?

• From a physical-optics point of view the question arises, if there exists any manipulation of the structure of the surface, which provides an effect of the form:

 $\boldsymbol{U}_{\perp}^{\text{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})\right) = \left\{ \boldsymbol{\mathsf{B}}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})\right)$

- A detailed answer can only be given for a specific surface structure.
- By introducing microstructured layers onto the surface a wavefront surface response can be implemented:
 - Graded-index layer
 - Volume hologram layer
 - Diffractive layer
 - Metamaterial layer

How to Realize a Desired Wavefront Surface Response (WSR)?

• From a physical-optics point of view the question arises, if there exists any manipulation of the structure of the surface, which provides an effect of the form:

 $\boldsymbol{U}_{\perp}^{\text{out}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})\right) = \left\{ \boldsymbol{\mathsf{B}}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})\right)$

- A detailed answer can only be given for a specific surface structure.
- By introducing microstructured layers onto the surface a wavefront surface response can be implemented:
 - Graded-index layer
 - Volume hologram layer
 - Diffractive layer
 - Metamaterial layer

Physical Optics Modeling: Metasurface Layer

• In general a real surface layer structure does not just realize the desired wavefront response but additional effects and fields:

 $\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \left\{ \mathbf{B}(\boldsymbol{\rho}; \psi^{\text{in}}) \boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho}) \right) + \boldsymbol{V}_{\perp}^{\text{res}}(\boldsymbol{\rho})$

• For nanofin-based metalayers the typical result can be written as:

$$\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \left\{ \mathbf{B}^{+}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})\right) \\ + \left\{ \mathbf{B}^{-}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) - \Delta\psi(\boldsymbol{\rho})\right)$$

• In depth investigation reveals, that $+\Delta\psi$ occurs for R-circularly polarized input fields and the conjugate phase for L-circularly polarized input.

M. Khorasaninejad *et al*., Science **352**, 1190-1194 (2016).

Metasurface layer

Linear Wavefront Response Function

Plane Wave through Plate: Ray and Field Tracing

Plane Wave through Plate: Introducing Metasurface

Propagation Plate with Metasurface: Ray and Field Tracing

Propagation Plate with Metasurface: Ray and Field Tracing

Plane Wave through Plate: Ray and Field Tracing

Plate with Metasurface: Ray and Field Tracing

Plate with Metasurface: Ray and Field Tracing

Plate with Metasurface: Ray and Field Tracing

Polarization Dependent Fuction of Nanofin Metalayer

Elliptical Polarization:

Diffractive layer

... with application to lenses

Physical Optics Modeling: Diffractive Layer

• In general a wavefront surface response $\Delta \psi(\rho)$ leads to the equation $\nabla_{\perp} \psi^{\text{out}}(\rho) = \nabla_{\perp} \psi^{\text{in}}(\rho) + \nabla_{\perp} (\Delta \psi(\rho))$ and because of the local plane wave assumption (homeomorphic zone) into

$$oldsymbol{\kappa}^{\mathsf{out}}(oldsymbol{
ho}) = oldsymbol{\kappa}^{\mathsf{in}}(oldsymbol{
ho}) + oldsymbol{K}(oldsymbol{
ho})$$

with $\boldsymbol{K}(\boldsymbol{\rho}) \stackrel{\text{def}}{=} \nabla_{\perp} (\Delta \psi(\boldsymbol{\rho})).$

This equation is directly related to a locally formulated grating equation

$$\boldsymbol{\kappa}^{\mathsf{out}}(\boldsymbol{\rho}) = \boldsymbol{\kappa}^{\mathsf{in}}(\boldsymbol{\rho}) + m\left(2\pi/d_x(\boldsymbol{\rho}), 2\pi/d_y(\boldsymbol{\rho})\right)$$

with the local grating period $d(\rho) = (d_x(\rho), d_y(\rho))$.

• That leads to the basic principle of a diffractive layer via:

$$\boldsymbol{d}(\boldsymbol{\rho}) = 2\pi \left(\left(\frac{\partial \psi(\boldsymbol{\rho})}{\partial x} \right)^{-1}, \left(\frac{\partial \psi(\boldsymbol{\rho})}{\partial y} \right)^{-1} \right)$$

Physical Optics Modeling: Diffractive Layer

• This design and modeling understanding results in the decomposition of the output field into a series of local grating orders:

$$V_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \left\{ \mathbf{B}^{(1)}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})\right) \\ + \sum_{m=-\infty,m\neq 1}^{\infty} \left\{ \mathbf{B}^{(m)}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho}) + m\Delta\psi(\boldsymbol{\rho})\right)$$

- The 2×2 matrix $\mathbf{B}^{(m)}(\boldsymbol{\rho}; \psi^{\text{in}})$ expresses the Rayleigh-matrix of grating theory and is rigorously calculated per direction and period by the Fourier Modal Method (FMM). Design should minimize Rayleigh coefficients for all undesired orders.
- Complications: Period drastically varies over surface, which results in a laterally varying number of propagating subfields. Full treatment available in **VirtualLab Lens Solutions**.

Wavefront Surface Response of Focusing Lens

• In order to transform a plane incident field into a spherical convergent one the wavefront surface response should be:

Structure Design

- Wrap the WSR: $(\Delta \psi(\boldsymbol{\rho}))^{\mathsf{DOE}} = \mod_{p2\pi} \left\{ k_0 n \left(f \sqrt{\|\boldsymbol{\rho}\|^2 + f^2} \right) \right\}$ with $p \in \mathbb{N}$.
- For p = 1 local radial period follows with $d(\rho) = 2\pi/\Delta\psi'(\rho)$.
- Structure design by inverse Thin Element Approximation (TEA): The height profile h^{DOE} is given by:

Focusing Diffractive Lens with NA=0.2: Ray and Field Tracing

LightTrans International

LightTrans International

Amplitude Ex

Amplitude Ey

Amplitude Ez

• Amplitudes in Focus (Same scaling!)

LightTrans International

LightTrans International

Amplitude Ex

Amplitude Ey

Amplitude Ez

• Amplitudes in Focus (Same scaling!)

• Amplitudes in Focus (Same scaling!)

Lens with NA=0.1 and 8 Height Values: Ray and Field Tracing

Inclusion of Higher Orders

Inclusion of Higher Orders

Design Wavelength Height Scaling Factor	532 nm					
✓ Use Profile Quantization No. of Height Levels	8 ~					
Order for Simulation						
Order						
	-2					
	-1					
	0					
	+1					
	+2					

Higher Orders (8 Level): -2nd Order

Higher Orders (8 Level): -1st Order

Higher Orders (8 Level): 0th Order

LightTrans International

Higher Orders (8 Level): 1st Order (Working Order)

Higher Orders (8 Level): +2nd Order

Lens with NA=0.1 and 8 Height Values: Ray and Field Tracing

Standard Workflow

- Design of system with optional inclusion of ideal Wavefront Surface Response (WSR) function.
- Decision about most suitable flat optics layer to realize WSR.
- Design of layer structure.
- Analysis of the performance and detrimental additional subfields.

M. Khorasaninejad *et al*., Science **352**, 1190-1194 (2016).

Example VR/AR projection approach

Projection: Holographic/Diffractive Lens Approach

Design and Simulation for Different FOV Angles

Design and Simulation for Different FOV Angles

Standard Workflow

- Design of system with optional inclusion of ideal Wavefront Surface Response (WSR) function.
- Decision about most suitable flat optics layer to realize WSR.
- Design of layer structure.
- Analysis of the performance and detrimental additional subfields.
- Tolerancing.
- Export of fabrication data.

M. Khorasaninejad *et al*., Science **352**, 1190-1194 (2016).

Standard Workflow

- Design of system with optional inclusion of ideal Wavefront Surface Response (WSR) function.
- Decision about most suitable flat optics layer to realize WSR.
- Design of layer structure.
- Analysis of the performance and detrimental additional subfields.
- Tolerancing.
- Export of fabrication data.

Combination with OpticStudio® via Binary Surfaces, which represent a special form of a WSR.

M. Khorasaninejad *et al*., Science **352**, 1190-1194 (2016).

Structure of Workshop

- Introduction of theory
 - Frank Wyrowski
- Design of binary surfaces in OpticStudio®
 - Akil Bhagat
- Physical-optics analysis of imported systems from
 OpticStudio: Diffractive lenses
 - Roberto Knoth
- Metalenses theory and modeling
 - Site Zhang
- Fabrication export
 - Roberto Knoth

Binary Surfaces in OpticStudio®

Wavefront Surface Response in OpticStudio®

Intraocular Lens Model using OpticStudio

- Using the Binary 2 surface to model the lens
- Setup and design
- Analysis
- Next Steps

Update: All Windows - C C + C + C + C + C + C + C + C + C +	📄 Lens Data 🗙						Ŧ	🔀 3: FFT MTF 🗙 🦆 2: Spot Diagram
Surface 6 Properties Surface Type Comment Radius Thickness Material OBJECT (aper) Standard CONNEA 7.800000 0.520000 CORNEA 2 (aper) Standard CONNEA 7.800000 0.520000 AQUEOUS 3 Standard I10000 1500000 AQUEOUS 5 (aper) Binary 2 LENS Infinity 0.100000 AQUEOUS 5 (aper) Binary 2 LENS Infinity 0.100000 AQUEOUS 5 (aper) Even Asphere -5.918718 V 16.5800 VITREOUS 7 MAGE Standard RTINA 11.000 VITREOUS 7 Model Corrent Description Corrent Corrent Description Corrent Corrent Corrent Description Corrent Corrent Corrent Corrent Corrent Corrent Description Corrent Corrent Corrent Description Corrent Corrent Corrent Description Corrent Corrent Description Corrent Corrent Corrent Corrent Corrent	Update: All Windows	- C @ + 🥥	💷 🕂 🤸	‡ ∌ ‡ O·	• 🛫 🧲 💿 📗] \$ ↔ ⇒ 6		🕞 Settings 孝 🗈 🔛 🖶 🖊 🔲 🖊 🗖 🖊 🗕 🔛 🐨 🕸 3 x 4 • 🕹 Standard • Automatic •
Surface Type Comment Radius Thickness Material Coat 0 OBJECT (aper) Standard • Infinity <	Surface 6 Properties () Configuration 1/2 ()						Current - 🔞	
0 OBJECT (aper) Standard • Infinity Infinity Infinity 1 (aper) Standard • CORNEA 7.800000 0.5200000 CORNEA 2 (aper) Standard • 6.700000 1.600000 AQUEOUS 3 Standard • IRIS Infinity 3.00000 AQUEOUS 5 (aper) Binary 2 • LENS Infinity 3.700000 PMMA 6 (aper) Even Asphere • -5.918718 V 16.5800 VITREOUS 7 IMAGE Standard • RETINA +11.000 - - • • • • • - • • • • • • - • • • • • • - - • • • • • • • -	Surfac	е Туре	Comment	Radius	Thickness	Material	Coat	1.0
1 (aper) Standard • CORNEA 7.800000 0.520000 CORNEA 2 (aper) Standard • 6.700000 1.500000 AQUEOUS 3 Standard • 11.000 1.600000 AQUEOUS 4 STOP Standard • 11.000 1.600000 AQUEOUS 5 (aper) Binary 2 • LENS Infinity 3.700000 PMMA 6 (aper) Even Asphere • -5.918718 V 16.5800 VTIREOUS 7 MAGE Standard • RETINA -11.000 - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	0 OBJECT (aper)	Standard 🔻		Infinity	Infinity			
2 (aper) Standard • 6.700000 1.500000 AQUEOUS 3 Standard • 11.0000 1.600000 AQUEOUS 5 (aper) Binary 2 • LENS Infinity 3.700000 PMMA 6 (aper) Even Asphere • -5.918718 V 16.5800 VITREOUS 7 IMAGE Standard • RETINA -11.000	1 (aper)	Standard 🔻	CORNEA	7.800000	0.520000	CORNEA		0.8
3 Standard • 11.0000 1.600000 AQUEOUS 4 STOP Standard • IRIS Infinity 0.100000 AQUEOUS 5 (aper) Binary 2 • LENS Infinity 0.100000 AQUEOUS 7 MAGE Standard • IRIS Infinity 0.100000 PMMA 6 (aper) Even Asphere • -5.918718 V 16.5800 VITREOUS 7 MAGE Standard • RETINA - 11.000 - - • • • • • • • • • • • • • • • • • • • • • • • • • <td>2 (aper)</td> <td>Standard 🔻</td> <td></td> <td>6.700000</td> <td>1.500000</td> <td>AQUEOUS</td> <td></td> <td></td>	2 (aper)	Standard 🔻		6.700000	1.500000	AQUEOUS		
STOP Standard RIS Infinity 0.100000 AQUEOUS Sandard RETINA 1.1.000 Construction of the second seco	3	Standard 🔻		11.0000	1.600000	AQUEOUS		٩.0 t
S (aper) Binary 2 · LENS Infinity 3.700000 PMMA G (aper) Even Asphere · -5.918718 V 16.5800 VITREOUS T MAGE Standard · RETINA -11.000 S settings S A Mer · A H & Q A Mer · Content · Con	4 STOP	Standard 🔻	IRIS	Infinity	0.100000	AQUEOUS		ъ
6 (aper) Even Asphere • -5.918718 V 16.5800 VITREOUS 7 IMAGE Standard • RETINA -11.000 • • • • • • • • • • • • • • • • • • • • • • • •	5 (aper)	Binary 2 🔻	LENS	Infinity	3.700000	PMMA		의 0.4 · · · · · · · · · · · · · · · · · · ·
7 IMAGE Standard • RETINA -11.000 - • Standard • RETINA -11.000 - • • • • • • • • • • • • • • • • • • •	6 (aper) E	Even Asphere 🔻		-5.918718 V	16.5800	VITREOUS		po
• 1: Layout X • Settings • • • • • • • • • • • • • • •	7 IMAGE	Standard 🔻	RETINA	-11.000	-			Σ 0.2
			<				>	
Settings S Setting	1: Lavout X						Ŧ	0 55.0 110.0 165.0 220.0 275.0 330.0 385.0 440.0 495.0 550.0
Settings Interindeness Current Image: Setting inset Image: Setting inset Image: Setting inset Image: Setting inset Image: Setting inset Image: Setting inset Image: Setting inset Image: Setting inset Image: Setting inset	Sottings		×_ л ц	20 0 P	🕽 📑 🙆 Lina	Thickness - O	urront •	Spatial Frequency in cycles per mm
Image: Specific and the set of the		iiii 'iii 'i ii /	- 40	** <mark>```</mark> ≅ L			unent	
Polychromatic Diffraction MTF Eye- retinal image 2/5/2019 Zemax Surface: Image (RETINA) Layout Layout Layout Zemax Zemax Comparison of a Plane.aptimized.apt								☑ — 0.00 (deg)-Tangential ☑ … 0.00 (deg)-Sagittal ☑ — 10.00 (deg)-Tangential ☑ … 10.00 (deg)-Sagittal ☑ — 20.00 (deg)-Tangential ☑ … 20.00 (deg)-Sagittal
Eye- retinal image 2/5/2019 Zemax Data for 0.4700 to 0.6500 µm. Surface: Image (RETINA) Zemax Legend items refer to Field positions Zemax Ever-retinal image 2/0783 Zemax								Polychromatic Diffraction MTF
Data for 0.4700 to 0.6500 µm. Surface: Image (RETINA) Legend items refer to Field positions			d		7			Eye- retinal imageZemax2/5/2019Zemax OpticStudio 18.9
Legend items refer to Field positions			$\sqrt{1}$		7			Data for 0.4700 to 0.6500 µm. Surface: Image (RETINA)
Zemax		佳			-			Legend items refer to Field positions
Z0 mm Layout 2//059		#						
Z0 mm Layout Zemax		```	Ø		/			
ZI mm Ever-retinal lange Z/rots Zemax Zemax			\mathbf{i}					
Epe-retiral isage Z//rots Zemax				20 mm				
Total Axial Length: 24.0000 m	Eye- retinal image 2/5/2019 Total Axial Length: 24.00000 am			ayou L	7emax	Zemax DoticStudio 18 9	,	

OpticStudio[®]

Binary 2 Surface

- In this system, the diffractive intraocular lens is modelled using a Binary 2 surface
- The Binary 2 surface has an even asphere base shape, with a grating period defined by a rotationally symmetric polynomial
 - Even Asphere sag:

$$z = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}} + \alpha_1 r^2 + \alpha_2 r^4 + \alpha_3 r^6 + \alpha_4 r^8 + \alpha_5 r^{10} + \alpha_6 r^{12} + \alpha_7 r^{14} + \alpha_8 r^{16}$$

• Additional Phase added by the grating:

$$\Phi = M \sum_{i=1}^{N} A_i \rho^{2i}$$

- For a complete definition of these terms, please see the Binary 2 OpticStudio help file or the article below:
 - <u>https://customers.zemax.com/os/resources/learn/knowledgebase/how-diffractive-surfaces-are-modeled-in-zemax</u>

OpticStudio[®]

Setup and Design

• OpticStudio models only 1 diffractive order at a time, which means we will utilize multiple configurations in this file to model 2 orders

8	Multi-Configuration Editor								
Update: All Windows - 🔖 🖓 🏹 🔾 🎒 💷 🧲 🗉									
Operand 1 Properties Operand 1 Properties Configuration 1/2									
	Active :	Config 2							
1	PRAM -	5/0	0.000000	1.000000					
2	FLTP 🔻	-	0	1					
3	THIC •	0	1.000000E+10	250.000000					
4	YFIE 🔻	2	10.000000	10.000000					
5	YFIE 🔻	3	20.00000	20.000000					

OpticStudio°

Setup and Design

- Once the initial system is setup, OpticStudio can be used to optimize the system to achieve the best performance for both configurations
- This system was optimized for minimum RMS spot size along both configurations using the built in Optimization Wizard

 Wizards and Opera 	nds < >				Me	rit Functio	n: Click Update	to Calculate				
Optimization Wizard Current Operand (1)	Optimization Funct	tion	Pupil Integrat	Pupil Integration			Boundary Values					
	Criterion:	Spot 🗸	Gaussian Gaussia	 Gaussian Quadrature Rectangular Array 		Glass Min:		0	tat	Woight	Value	% Contrib
	Spatial Frequency:	30	 Rectangul 				Max:	1e+03	jet	weight	value	76 COntrib
	X Weight:	1	Rings:	3	~		Edge Thickness:	0	000	1.000000	-0.000152	0.032412
	Y Weight:	1	Arms:	6	~	🗌 Air	Min:	0				
	Туре:	RMS ~	Obscuration:	0			Max:	1e+03	000	1.000000	2.452991E-07	8.398604E-08
	Reference:	Centroid ~					Edge Thickness:	0	ms			
	Start At:	6 🜩	Configuration: All		~	Assume Axial Symmetry:		\checkmark				
	Overall Weight: 1		Field:	Field: All		Ignore Lateral Color:						
				1		Add Favo	rite Operands:		000	0.005294	0.008927	0.588899
				2			····		000	0.008471	0.011388	1.533277
					C			D	000	0.005294	0.013701	1.387183
	ОК Арріу	Close		Sav	ve Settings		bad Settings	Reset Settings	000	0.029263	0.006116	1.527951
			14 TRAC -	2 0	0.000000	0.000000	0.707107 0.0	00000	0.0000000	0.046821	0.005438	1.932467
			15 TRAC -	2 0	0.000000	0.000000	0.941965 0.0	00000	0.000000	0.029263	0.005767	1.358308
			16 TRAC -	20		0 00000	0.225711 0.0	00000	0 00000	0.058178	0.002580	1.046020

Analysis

- There are many analysis tools in OpticStudio
- In general, we recommend using a tool that mimics the measurements you will make in the lab

Next Steps

- Our system is designed, and the analyses indicate it meets specifications, however our Binary 2 surface is still just an equation and has no real geometry.
- At this point our friends at VirtualLab can take the Binary 2 surface designed in OpticStudio, and create an actual optic out of it which will have the same properties we modelled.

Structure of Workshop

- Introduction of theory
 - Frank Wyrowski
- Design of binary surfaces in OpticStudio
 - Akil Bhagat
- Physical-optics analysis of imported systems from OpticStudio: Diffractive lenses
 - Roberto Knoth
- Metalenses theory and modeling
 - Site Zhang
- Fabrication export
 - Roberto Knoth

An Example of Diffractive Layer Design

Design and Analysis of Intraocular Diffractive Lens

Design Task for a Diffractive Layer

Import of Optical System from OpticStudio

The configuration of the optical setup as well as the design of the wavefront surface response by a Binary-2 surface was generated in OpticSudio.

VirtualLab Fusion provides the capability to import the optical setups and to merge them in a single optical setup configuration.

Far View: Conformity of OpticStudio Import

Near View: Conformity of OpticStudio Import

VirtualLab Fusion

- central wavelength of 555 nm
- on-axis mode

Structure Design: Diffractive Layer Profile Height

• The structure profile of the diffractive layer is calculated by TEA according to the wavefront surface response:

Structure Design: Diffractive Layer Profile Height

• With the introduction of a scaling factor in the TEA formula, the resulting structure height is modulated to control the efficiencies of the diffraction orders:

 $h^{DOE}(\rho) = \beta \frac{\lambda}{2\pi\Delta n} \Delta \psi(\rho)^{DOE}$

- A quantization of the structure with 2 height levels is chosen because binary diffractive lenses
 - are beneficial for manufacturing (cost, easier to fabricate)
 - give a better control of the efficiencies especially for the 0th and 1st order using the height modulation approach

Structure Design: Height Modulation of 1.00

Structure Design: Height Modulation of 0.95

Structure Design: Height Modulation of 0.90

Structure Design: Find the Optimum Scaling Factor

- As a goal the peak energy density of the both foci shall be the same.
- Therefore, the peak energy density is calculated according to the scaling factor for both scenarios.

Optimum of the scaling factor for equivalent peak energy density for both foci (near and far view)

Structure Design: Optimum Height Modulation of 0.605

Analysis: PSF of Foci for Optimum Structure Design

Illustration of Focus Development in Near View Region

Illustration of Focus Development in Far View Region

Illustration of Focus Development from Near to Far Region

Far View Scenario: Analysis of the Focal Spots per Color

An Example of Diffractive Layer Design

Design and Analysis of a Hybrid Eyepiece for Correction of Chromatic Aberration

Modeling and Design Task

Design of Wavefront Surface Response in OpticStudio

Wavefront Surface Response (WSR)

On-Axis Analysis: Comparison of Spot Diagram

On-Axis Analysis: Comparison of PSF

On-Axis Analysis: Comparison of MTF

Off-Axis Analysis: Comparison of Spot Diagram

Off-Axis Analysis: Comparison of PSF

Off-Axis Analysis: Comparison of MTF

Structure Design – Diffractive Lens

Visualization of Quantized Diffractive Lens Structure

On-Axis Analysis: Inclusion of Higher Orders

-30 -20 -10 0 10 20 30

X [µm]

0th diffraction order

10

-20

30

 \propto Electric Energy Density [1E3 (V/m)²]

3.96

∝ Electric Energy Density

 $[(V/m)^2]$

64.8

33.1

1.51

-1st diffraction order

+1st diffraction order

simulation time per order ~seconds

Off-Axis Analysis: Inclusion of Higher Orders

On-Axis Analysis: Inclusion of Height Profile Quantization

PSF scaled by factor of ~1/100 to maximum

Off-Axis Analysis: Inclusion of Height Profile Quantization

... convert to metalens

Structure of Workshop

- Introduction of theory
 - Frank Wyrowski
- Design of binary surfaces in OpticStudio
 - Akil Bhagat
- Physical-optics analysis of imported systems from
 OpticStudio: Diffractive lenses
 - Roberto Knoth
- Metalenses theory and modeling
 - Site Zhang
- Fabrication export
 - Roberto Knoth
Metasurface Theory and Modeling

• In general a real surface layer structure does not just realize the desired wavefront response but additional effects and fields

 $\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \left\{ \mathbf{B}(\boldsymbol{\rho}; \psi^{\text{in}}) \boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})) \right) + \boldsymbol{V}_{\perp}^{\text{res}}(\boldsymbol{\rho}) \,.$

• There are different types of metasurfaces that can be used to realize the desired $\Delta \psi(\rho)$. The exact form of the B-operator and the residual terms depends on the employed type of metasurfaces.

Physical Effects for Realizing Metasurfaces

- Propagation phase delay
 - Centrosymmetric (polarization insensitive)

P. Lalanne *et al.*, J. Opt. Soc. Am. A **16**, 1143-1156 (1999).

 Rotationally asymmetric (form birefringence)

> M. Khorasaninejad *et al*., Science **352**, 1190-1194 (2016).

Physical Effects for Realizing Metasurfaces

- Propagation phase delay
 - Centrosymmetric (polarization insensitive)

P. Lalanne *et al*., J. Opt. Soc. Am. A **16**, 1143-1156 (1999).

 Rotationally asymmetric (form birefringence)

> M. Khorasaninejad *et al*., Science **352**, 1190-1194 (2016).

 Resonance phase delay

VirtualLab Fusion is capable of modeling different metasurface structures.

ı *et al*., Science **334**, 337 (2011).

Y. F. Yu *et al*., Laser Photonics Rev. **9**, 412-418 (2015).

Physical Effects for Realizing Metasurfaces

- Propagation phase delay
 - Centrosymmetric (polarization insensitive)

P. Lalanne *et al*., J. Opt. Soc. Am. A **16**, 1143-1156 (1999).

 Rotationally asymmetric (form birefringence)

> M. Khorasaninejad *et al*., Science **352**, 1190-1194 (2016).

Y. F. Yu *et al*., Laser Photonics Rev. **9**, 412-418 (2015).

Metasurface Modeling

• In general a real surface layer structure does not just realize the desired wavefront response but additional effects and fields

 $\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \left\{ \mathbf{B}(\boldsymbol{\rho}; \psi^{\text{in}}) \boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})) \right) + \boldsymbol{V}_{\perp}^{\text{res}}(\boldsymbol{\rho}) \,.$

• For metasurfaces made of rotated nanofins, the typical results can be written as

$$\begin{aligned} \boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) &= \left\{ \mathbf{B}^{+}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho})) \right) \\ &+ \left\{ \mathbf{B}^{-}(\boldsymbol{\rho};\psi^{\text{in}})\boldsymbol{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp\left(\mathrm{i}(\psi^{\text{in}}(\boldsymbol{\rho}) - \Delta\psi(\boldsymbol{\rho})) \right) \end{aligned}$$

- We will show that $+\Delta\psi$ occurs for R-circularly polarized input fields and the conjugate phase $-\Delta\psi$ for L-circularly polarized input.

Metasurface Building Block

- Locally at ho, the B-operator for a single meta building block is

$$\boldsymbol{V}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) = \boldsymbol{\mathcal{B}}(\boldsymbol{\rho};\psi^{\mathrm{in}})\boldsymbol{V}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}),$$

and writting down the 2×2 -matrix B-operator explicity, we have

$$\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \begin{pmatrix} B_{xx}(\boldsymbol{\rho};\psi^{\text{in}}) & B_{xy}(\boldsymbol{\rho};\psi^{\text{in}}) \\ B_{yx}(\boldsymbol{\rho};\psi^{\text{in}}) & B_{yy}(\boldsymbol{\rho};\psi^{\text{in}}) \end{pmatrix} \boldsymbol{V}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \,.$$

• Building blocks over the whole surface are same, but with different rotation angle $\theta(\rho)$. That can be expressed as

$$\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \begin{pmatrix} \cos\theta(\boldsymbol{\rho}) & -\sin\theta(\boldsymbol{\rho}) \\ \sin\theta(\boldsymbol{\rho}) & \cos\theta(\boldsymbol{\rho}) \end{pmatrix} \begin{pmatrix} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{pmatrix} \begin{pmatrix} \cos\theta(\boldsymbol{\rho}) & \sin\theta(\boldsymbol{\rho}) \\ -\sin\theta(\boldsymbol{\rho}) & \cos\theta(\boldsymbol{\rho}) \end{pmatrix} \boldsymbol{V}_{\perp}^{\text{in}}(\boldsymbol{\rho})$$

Metasurface Building Block

Metasurface Building Block

and, without introducing any approximation, but rearrange the terms so that the rotation angle θ can be extracrted, we obtain the following result

$$\begin{aligned} \mathbf{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = & \frac{1}{2} \left[\left(b_{xx} + b_{yy} \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \left(b_{xy} - b_{yx} \right) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right] \mathbf{V}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \\ & + \frac{1}{4} \left[\left(b_{xx} - b_{yy} \right) \begin{pmatrix} 1 & -\mathbf{i} \\ -\mathbf{i} & -1 \end{pmatrix} + \left(b_{xy} + b_{yx} \right) \begin{pmatrix} \mathbf{i} & 1 \\ 1 & -\mathbf{i} \end{pmatrix} \right] \mathbf{V}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \exp(\mathbf{i}2\theta) \\ & + \frac{1}{4} \left[\left(b_{xx} - b_{yy} \right) \begin{pmatrix} 1 & \mathbf{i} \\ \mathbf{i} & -1 \end{pmatrix} + \left(b_{xy} + b_{yx} \right) \begin{pmatrix} -\mathbf{i} & 1 \\ 1 & \mathbf{i} \end{pmatrix} \right] \mathbf{V}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \exp(-\mathbf{i}2\theta) \end{aligned}$$

Metasurface Modeling

• Omitting the variables for conciseness in the expression

$$\boldsymbol{V}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \boldsymbol{V}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \,,$$

and, without introducing any approximation, but rearrange the terms so that the rotation and the following result With spatially varying rotation

$$\begin{aligned} \mathbf{V}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) = & \frac{1}{2} \left[(b_{xx} + b_{yy}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & 0 \\ -i & -1 \\ -i & -1 \\ + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & 0 \\ -i & -1 \\ -i &$$

Metasurface Modeling

• Omitting the variables for conciseness in the expression

$$\boldsymbol{V}_{\perp}^{\mathrm{out}}(\boldsymbol{\rho}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \boldsymbol{V}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) \,,$$

and, without introducing any approximation, but rearrange the terms so that the rotation angle θ can be extracrted, we obtain the following result

$$\begin{split} \mathbf{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = & \frac{1}{2} \left[(b_{xx} + b_{yy}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + (b_{xy} - b_{yx}) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right] \mathbf{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \exp(\mathrm{i}\psi^{\text{in}}(\boldsymbol{\rho})) \\ & + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & -\mathrm{i} \\ -\mathrm{i} & -1 \end{pmatrix} + (b_{xy} + b_{yx}) \begin{pmatrix} \mathrm{i} & 1 \\ 1 & -\mathrm{i} \end{pmatrix} \right] \mathbf{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho}))\right) \\ & + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & -1 \end{pmatrix} + (b_{xy} + b_{yx}) \begin{pmatrix} -\mathrm{i} & 1 \\ 1 & \mathrm{i} \end{pmatrix} \right] \mathbf{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \exp\left(\mathrm{i}(\psi^{\text{in}}(\boldsymbol{\rho}) - \Delta\psi(\boldsymbol{\rho}))\right), \\ \text{with } \Delta\psi(\boldsymbol{\rho}) := 2\theta(\boldsymbol{\rho}), \text{ and } \theta(\boldsymbol{\rho}) \text{ is the rotation angle.} \end{split}$$

desired response $\Delta\psi(oldsymbol{
ho})$

Form Birefringence Analysis

• Next, we would like to examine the matrix

$$\left(egin{array}{ccc} b_{xx} & b_{xy} \ b_{yx} & b_{yy} \end{array}
ight)$$

that describes the fundamental property of the meta building block, and we analyze it rigorously.

 Ideally, the building block is supposed to work as a half-wave plate, i.e.

$$b_{xy} \approx 0,$$

 $b_{yx} \approx 0,$
 $b_{xx} \approx -b_{yy}$

• We will substitute these approximations step by step in what follows.

Form Birefringence Analysis

Nanofin Structural Designs

Spectral Analysis for Nanofin – 405nm Design

Spectral Analysis for Nanofin – 405nm Design

Angular Analysis for Nanofin – 405nm Design

- B-matrix for metasurface building block
 - $\left(\begin{array}{ccc} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{array}\right) \ .$
- Ideally, it should function as a half-wave plate, i.e.

 $egin{aligned} b_{xy} &pprox 0\,,\ b_{yx} &pprox 0\,,\ b_{xx} &pprox -b_{yy}\,. \end{aligned}$

Angular Analysis for Nanofin – 405nm Design

 B-matrix for metasurface building block

$$\left(\begin{array}{cc} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{array}\right) \,.$$

• Ideally, it should function as a half-wave plate, i.e.

 $b_{xy} \approx 0 ,$ $b_{yx} \approx 0 ,$ $b_{xx} \approx -b_{yy} .$

Metasurface Modeling

As shown before, valid for certain wavelength and angle range

• Use the half-wave plate approximations

 $b_{xy} \approx 0, \quad b_{yx} \approx 0,$ $b_{xx} \approx -b_{yy}.$

• Then, the metasurface response can be written as

$$V_{\perp}^{\text{out}}(\rho) = \frac{1}{2} \left[\underbrace{b_{xx} + b_{yy}}_{\downarrow} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp(\mathrm{i}\psi^{\text{in}}(\rho)) + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & -\mathrm{i} \\ -\mathrm{i} & -1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} \mathrm{i} & 1 \\ 1 & -\mathrm{i} \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp\left(\mathrm{i}(\psi^{\text{in}}(\rho) + \Delta\psi(\rho))\right) + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & -1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} -\mathrm{i} & 1 \\ 1 & \mathrm{i} \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp\left(\mathrm{i}(\psi^{\text{in}}(\rho) - \Delta\psi(\rho))\right) + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & -1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} -\mathrm{i} & 1 \\ 1 & \mathrm{i} \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp\left(\mathrm{i}(\psi^{\text{in}}(\rho) - \Delta\psi(\rho))\right) + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & -1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} -\mathrm{i} & 1 \\ 1 & \mathrm{i} \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp\left(\mathrm{i}(\psi^{\text{in}}(\rho) - \Delta\psi(\rho)\right)\right) + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & -1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} -\mathrm{i} & 1 \\ 1 & \mathrm{i} \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp\left(\mathrm{i}(\psi^{\text{in}}(\rho) - \Delta\psi(\rho)\right)\right) + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & -1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} -\mathrm{i} & \mathrm{i} \\ \mathrm{i} & \mathrm{i} \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp\left(\mathrm{i}(\psi^{\text{in}}(\rho) - \Delta\psi(\rho)\right)\right) + \frac{1}{4} \left[(b_{xx} - b_{yy}) \begin{pmatrix} \mathrm{i} & \mathrm{i} \\ \mathrm{i} & -1 \end{pmatrix} + \underbrace{b_{xy} + b_{yx}}_{\downarrow} \begin{pmatrix} -\mathrm{i} & \mathrm{i} \\ \mathrm{i} & \mathrm{i} \end{pmatrix} \right] U_{\perp}^{\text{in}}(\rho) \exp\left(\mathrm{i}(\psi^{\text{in}}(\rho) - \Delta\psi(\rho)\right)\right)$$

Metasurface Modeling

• Use the half-wave plate approximations

$$b_{xy} \approx 0, \quad b_{yx} \approx 0,$$

 $b_{xx} \approx -b_{yy}.$

• Then, the metasurface response can be written as

$$\begin{split} \mathbf{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) &= \frac{1}{4} \left(b_{xx} - b_{yy} \right) \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix} \mathbf{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \exp \left(i(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})) \right) \longrightarrow \text{desired } \Delta \psi(\boldsymbol{\rho}) \\ &+ \frac{1}{4} \left(b_{xx} - b_{yy} \right) \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \mathbf{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \exp \left(i(\psi^{\text{in}}(\boldsymbol{\rho}) - \Delta \psi(\boldsymbol{\rho})) \right) \longrightarrow \text{conjugate part} \\ &= \left\{ \mathbf{B}^{+}(\boldsymbol{\rho}; \psi^{\text{in}}) \mathbf{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp \left(i(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})) \right) \\ &+ \left\{ \mathbf{B}^{-}(\boldsymbol{\rho}; \psi^{\text{in}}) \mathbf{U}_{\perp}^{\text{in}}(\boldsymbol{\rho}) \right\} \exp \left(i(\psi^{\text{in}}(\boldsymbol{\rho}) - \Delta \psi(\boldsymbol{\rho})) \right) \end{split}$$

Metasurface Modeling – Polarization Effect

• If the input field is R-circularly polarized, i.e.

$$\boldsymbol{V}_{\perp}^{\mathrm{in}}(\boldsymbol{\rho}) = \begin{pmatrix} 1 \\ i \end{pmatrix} U^{\mathrm{in}}(\boldsymbol{\rho}) \exp(\mathrm{i}\psi^{\mathrm{in}}(\boldsymbol{\rho})) \,,$$

Hint: $\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = 0$

substituting it into the B-operator expression, yields the output field in the following form

$$\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \frac{1}{2} \left(b_{xx} - b_{yy} \right) \begin{pmatrix} 1 \\ -i \end{pmatrix} U^{\text{in}}(\boldsymbol{\rho}) \exp \left(i(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta \psi(\boldsymbol{\rho})) \right) \xrightarrow{} \text{desired } \Delta \psi(\boldsymbol{\rho}) \text{ only}$$

• In the idealized case, with $b_{xx} = 1$ and $b_{yy} = -1$, one gets

$$\boldsymbol{V}_{\perp}^{\text{out}}(\boldsymbol{\rho}) = \begin{pmatrix} 1 \\ -\text{i} \end{pmatrix} U^{\text{in}}(\boldsymbol{\rho}) \exp\left(\text{i}(\psi^{\text{in}}(\boldsymbol{\rho}) + \Delta\psi(\boldsymbol{\rho}))\right) \,.$$

LightTrans International

Structure of Workshop

- Introduction of theory
 - Frank Wyrowski
- Design of binary surfaces in OpticStudio
 - Akil Bhagat
- Physical-optics analysis of imported systems from
 OpticStudio: Diffractive lenses
 - Roberto Knoth
- Metalenses theory and modeling
 - Site Zhang
- Fabrication export
 - Roberto Knoth

Fabrication Export: Intraocular Lens (Binary → 1 Mask)

Sampled Data Export

Visualization of GDS2 Mask Data

Structure Preview in VirtualLab Fusion

Fabrication Export: Eyepiece (4 Level → 2 Masks)

Sampled Data Export

Structure Preview in VirtualLab Fusion

Fabrication Export: HOE (Binary → 1 Mask)

Polygon Data Export

Structure Preview in VirtualLab Fusion

