

Diffractive Lightguide In- and Outcouple Situation using Surface and Volume Gratings

Abstract

In this demo we simulate a lightguide outcouple efficiency using a slanted outcouple grating and an ideal or binary incouple grating. As a result, the sensitivity of the lightguide efficiency is analyzed regarding the thickness and the amplitude of the refractive index modulation of the volume gratings

Modeling Task of Surface Gratings

Diffraction Efficiency vs. Relative Depth

simulation of a lightguide outcouple efficiency using a slanted outcouple grating and an ideal or binary incouple grating

outcouple grating c/p=fill factor

Parameter of Outcouple Grating	Value & Unit
relative depth	to be varied
slant angle φ	-30°
fill factor c/p	50%

comparison to a reference simulated purely for the outcouple grating (input grating with transmission of 100%)

Reference: J. Michael Miller, Nicole de Beaucoudrey, Pierre Chavel, Jari Turunen, and Edmond Cambril, "Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection," Appl. Opt. 36, 5717-5727 (1997)

Diffraction Efficiency vs. Slant Angle

simulation of a lightguide outcouple efficiency using a slanted outcouple grating and an ideal or binary incouple grating

outcouple grating

Parameter of Outcouple Grating	Value & Unit
relative depth	1.058λ
slant angle φ	to be varied
fill factor c/p	50%
relative depth slant angle φ fill factor c/p	1.058 <i>λ</i> to be varied 50%

comparison to a reference simulated purely for the outcouple grating (input grating with transmission of 100%)

Reference: J. Michael Miller, Nicole de Beaucoudrey, Pierre Chavel, Jari Turunen, and Edmond Cambril, "Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection," Appl. Opt. 36, 5717-5727 (1997)

Diffraction Efficiency vs. Fill Factor

simulation of a lightguide outcouple efficiency using a slanted outcouple grating and an ideal or binary incouple grating

Parameter of Outcouple Grating	Value & Unit
relative depth	1.058 <i>λ</i>
slant angle φ	-30°
fill factor c/p	to be varied

comparison to a reference simulated purely for the outcouple grating (input grating with transmission of 100%)

Reference: J. M Pier Car slar opti

J. Michael Miller, Nicole de Beaucoudrey, Pierre Chavel, Jari Turunen, and Edmond Cambril, "Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection," Appl. Opt. 36, 5717-5727 (1997).

Modeling Task of Volume Gratings

Grating Analysis: Thickness vs. Refractive Index Modulation

Lightguide Analysis: Thickness vs. Refractive Index Modulation

- next, the parameters of the volume gratings are coupled due to the fact, that the behavior is equivalent
- as a result, the sensitivity of the lightguide efficiency is analyzed regarding the thickness and the amplitude of the refractive index modulation of the volume gratings

Lightguide Analysis: Variation of Incidence Angle

Document Information

title	Diffractive Lightguide In- and Outcouple Situation using Surface and Volume Gratings
document code	Demo.19
version	1.0
VL version used for simulations	VirtualLab Fusion Summer Release 2019 (7.6.1.18)
category	Demo
further reading	