

September 2025, Release VirtualLab Fusion 2025.2

The New VirtualLab Fusion 2025

Overview of new features of version 2025.2

General Information

Version	2025.2 (Build 1.118)
Update Service	3 rd quarter of 2025 is required.
Install Type	Standalone Installation VirtualLab Fusion 2025.2 is installed in parallel to your existing VirtualLab Fusion installations.

Our Development Focus: Infrastructure vs. Solutions

- VirtualLab Fusion's development has always balanced infrastructure advancements with customer-driven solutions.
- For version 2025.2, we focused on developments triggered by user requests from customers and developed several new source models and components
- If there's a specific problem or application, you'd like us to address, we'd love to hear from you at <u>support@lighttrans.com</u>.

3 www.lighttrans.com

The New VirtualLab Fusion 2025.2

New Source Models

New Source Models: LED-Type Sources

- Enhance the realism of your optical simulations with two new unpolarized source types, specifically designed for LED-like emission characteristics:
 - Lambertian Radiation Mode
 - Cos(θ)ⁿ Radiation Mode
- Both models intelligently generate orthogonal radial and azimuthal polarization states, providing accurate, unpolarized light output.

Lambertian Radiation Mode: For Realistic LED Simulation

 The Lambertian Radiation Mode source model follows the well-established cosine emission law, making it ideal for representing commonly available LED-like light distributions.

Cos(θ)ⁿ Radiation Mode: Flexible Angular Distributions

- This source provides a tunable angular distribution for unpolarized, LED-like light.
- A customizable exponent allows you to model anything from broad Lambertian to narrow, highly directional emission profiles.
- Like all our unpolarized sources, it automatically generates the correct orthogonal polarization states for accurate, realistic results out-of-the-box.

Exponent: 10

Learn More About: OLED Modeling with VirtualLab 2025.2

Use Cases

 Basic structure-based source model for an OLED - Part: I Emitter Source Selection

... more coming soon

The New VirtualLab Fusion 2025.2

New Components

Linear Polarizer: Beyond the Paraxial Limit

- We introduce a new functional component to accurately represent a linear polarizer.
- Its **key advantage** over the traditional Jones Matrix-based polarizer is correct performance **under non-paraxial illumination**, such as from an LED.
- This ensures physically accurate results for any system, from paraxial to highangle, high-NA illumination.
- Simply place the component in your system - no medium or structural properties need to be defined.

Field after crossed polarizer illuminated by Lambertian source mode

Stop: Accurately Model Diffraction from Tiny Features

- The new **Stop** component is now the recommended component for defining stops in your system.
- It delivers faster simulation speeds for any obstruction size and excels at accurately modeling diffraction from very small stops under larger-field illumination.
- This component accurately models
 diffraction effects from these tiny features, a
 capability that was challenging with the
 previous method.
- Provides a flexible framework for analyzing the impact of small-scale defects on systemlevel imaging performance.

Laterally-Varying Retarder (Orientation): Polarization Control

- A brand-new functional component for advanced polarization control, allowing the phase delay between polarization components to vary as a function of position across the field.
- Enables tailored polarization shaping, moving beyond the uniform retardation of standard waveplates.
- Unlocks new possibilities for sophisticated beam shaping applications that depend on modulated polarization.

Laterally-Varying Beam Splitter Cube: Control of Reflection

- Introducing a new functional component for defining macroscopic spatial patterns of reflection and transmission on a beam splitting surface.
- Load an arbitrary 2D region to act as a distinct optical zone, such as a central mirror or hole.
- Assign unique reflectance and transmittance values for points inside the loaded region versus the surrounding substrate.
- Model complex components like beam splitters with a central obscuration, a reflective patch, or an off-axis aperture directly and efficiently.

Learn More About: New Components in VirtualLab 2025.2

Use Cases

- Mach-Zehnder Interferometer with Small Obstructions
- <u>Laterally-Varying Retarder</u>
- Mach-Zehnder Interferometer with Laterally-Varying Beam Splitter Cube

... more coming soon

14 www.lighttrans.com

The New VirtualLab Fusion 2025.2

Improved Simulation Capabilities

Enhancements for Off-Axis Parabolic Mirror (Wedge Type)

- Improvements for Off-Axis Parabolic Mirror (Wedge Type):
 - The component now supports the definition of negative focal lengths.
 - This enables the straightforward configuration of both concave and convex off-axis parabolic mirrors for a more versatile modeling experience.

New Surface Channels for Diffractive Lens & Functional Meta Lens

- Expanded Surface Channels for Diffractive Lenses & More:
 - The **Diffractive Lens** component now supports all four surface channels (++, +-, -+, --).
 - This enables full non-sequential usage of the component, allowing for more complex and versatile system modeling.
 - This capability has been extended to the Holographic Optical Element,
 Function Meta Lens, and
 Functional Modulated Metasurface components.

Improvements for Batch Mode Support

- Enhanced Batch Mode Control and Logging:
 - Introduced the new command option
 -customSubfolder, allowing
 users to specify a custom directory
 for storing simulation results,
 enabling better organization of
 automated workflows.
 - Implemented a clear separation of log files: preparation steps are now logged separately from errors and warnings generated during processing. This simplifies debugging and analysis of batch runs.

Learn More About: Improved Simulation Capabilities

Use Cases

- Collimation of a Spherical Wave by an Off-Axis Parabolic Mirror
- Off-Axis Parabolic Mirror (Tutorial)
- Design of a CGH for Null-Testing

... more coming soon

The New VirtualLab Fusion 2025.2

Bug Fixes

Bug Fixing - Overview

- As part of our ongoing commitment to quality and stability, we have addressed numerous issues reported by our users and identified by our development team.
- In VirtualLab Fusion 2025.2, we have resolved over 30 bugs across the platform, including fixes in:
 - Visualization of data arrays and results.
 - Configuration options for material data.
 - Merit function evaluation within the IFTA.
 - ...among other general stability and performance improvements.
- Thank to all our users who submitted reports and helped make this release more robust.

Major Bug Fixes I

1. Critical Stability Fix for Uncontrolled Crashes:

- In version 2025.1, an update to the underlying NMath numerical library inadvertently introduced instability on certain PC configurations, leading to uncontrolled crashes related to its internal use of the Intel MKL.
- We have thoroughly addressed this conflict in VirtualLab Fusion 2025.2.
 The software now remains stable and reliable across all supported system environments.

2. Fixed Isolated Positioning Update Bug:

- Code optimizations in version 2025.1 inadvertently broke the update mechanism for **Isolated Positioning**.
- This meant changes to elements or the setup might not reflect correctly in simulations until the user manually forced an update.
- This has been resolved; the update chain now works correctly for all positioning types, ensuring reliable simulation results.

Major Bug Fixes II

3. Gridded Segmentation Tool for Light Guides Enhanced

- Fixed: Resolved an issue from version 2025.1 where the gridded segmentation tool was not functioning correctly.
- Enhanced: Dramatically increased the maximum number of segments in both the x- and y-direction from 100 to 10,000, enabling much more flexible and complex light guide designs.

VirtualLab Fusion 2025.2 Release Highlights

- We are excited to present VirtualLab Fusion 2025.2, packed with new features and enhancements designed to accelerate your innovation:
 - New Source Models: Create more realistic systems with expanded light source options.
 - New Components: Build and simulate a wider range of innovative optical setups.
 - Improved Simulation Capabilities: Get results faster with performance boosts and enjoy greater flexibility with new nonsequential and automation tools.
- Experience a faster, more powerful, and more versatile simulation environment.

24 www.lighttrans.com